ER 1985

2arning
-e, Vol.
'82, pp.

-uction:
-2, pp.

wds for
Conf.,

d Prob-

search-
11-221,

lical In-
1981.
1 Arbor,

g Work-

19, pp-

Machine
p. 243-

«ching,”

for con-
{., 1979,

: M.ILT.
.. 18, no.

2ntation:
Machine
pp. 163-

tics,” Al

1e expert
18, 1984.
8, 1981.
on, Dep.

nf. Arti-

Orciuch,
ning in a
wiples of
yut. Soc.

ation Re-

aation re-
Williams,

ston, NIJ:

rarison of
ieval,” in

1, in June
sychology
the M.D.
Houston,
:r science

Computer
troit, ML,
it the Na-
MD. His
spment of

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAML-7, NO. 5, SEPTEMBER 1985

Representation of Activity Knowledge for
Project Management

ARVIND SATHI, MARK S. FOX, MEMBER, IEEE, aND MICHAEL GREENBERG

Abstract—Representation of activity knowledge is important to any
application which must reason about activities such as new product
management, factory scheduling, robot control, vehicle control, soft-
ware engineering, and air traffic control. This paper provides an inte-
gration of the underlying theories needed for modeling activities. Using
the domain of large computer design projects as an example, the se-
mantics of activity modeling is described. While the past research in
knowledge representation has discovered most of the underlying con-
cepts, our attempt is toward their integration. This includes the epis-
temological concepts for erecting the required knowledge structure; the
concepts of activity, state, goal, and manifestation for the adequate de-
scription of the plan and the progress; and the concepts of time and
causality to infer the progression among the activities. We also address
the issues which arise due to the integration of aggregation, time, and
causality among activities and states.

Index Terms—Activity, Al, causality, goal, knowledge representa-
tion, manifestation, time, truth propagation.

I. INTRODUCTION

THE management of activities in large projects is com-
posed of four parts.

1) Planning: Definition of activities and specification
of precedence, resource requirements, durations, due
dates, and milestones.

2) Scheduling: Selection of activities to perform (if

more than one way exists), and the assignment of actual
times and resources. '

3) Chronicling: Monitoring of project performance,
detection of deviations from the schedule, and the repair’

of the original schedule (possibly resulting in renewed
planning and scheduling).
4) Analysis: Evaluation of plans, schedules, and chron-

icled activities for normal reporting and the detection of
extraordinary situations.

Central to the performance of these activities is the
availability of a theory of activity representation. This
would have to be comprised of two parts: syntactic con-

Manuscript received May 17, 1985. This work was supported by the Dig-
ital Equipment Corporation. The views and conclusions contained herein
are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the Digital Equipment Cor-
poration.

A. Sathi was with the Intelligent Systems Laboratory, Robotics Institute,
Carnegie-Mellon University, Pittsburgh, PA. He is now with Carnegie
Group, Inc., Pittsburgh, PA 15219.

M. S. Fox is with the Intelligent Systems Laboratory, Robotics Institute,
Carnegie—MeI]on University, Pittsburgh, PA 15213.

M. Greenberg is with the Department of Computer and Information Sci-
encle, University of Massachusetts, Amherst, MA 01003.

Repair or debugging involves three activities: information collection/
Management, analysis, and replanning/rescheduling. Chronicling stands for
lhc information collection and management aspects of repair, while analy-
Sts, planning, and scheduling are covered elsewhere.

ventions and a set of semantic primitives. It would h
satisfy three criteria.

1) Completeness: represents all relevant con
Given an application, completeness requires that th
resentation span the domain.

2) Precision: provides appropriate granularit
knowledge. The representation should be capable «
scribing the domain situations at the level of precisior
in the domain.

3) Clarity: lacks ambiguity in interpretation. °
domain languages are typically ambiguous, the repr
tation should provide clarity by ensuring that eact
sitlation corresponds to one and only one mode].

The importance of such a theory is crucial not or
the construction of project management systems but t
application which must reason about activities. The:
clude factory scheduling, robot control, vehicle co
software engineering, and air traffic control. This I
provides the basic elements of the theory needed for
eling activities which can be used for the knowledg
gineering in such planning, scheduling, and/or pro

> chronicling tasks.

Considerable effort has gone into constructing piec
such a theory, e.g. | the aspects of time [1], causality
activity [2], authority [27], constraint representation
and ownership [21]. What is missing is a unificatic
these ideas into a single theory and a test of its adeq

Since 1982, the Callisto project {34] has been
structing such a theory in the context of engineering
ect management. The role of project management he
creased in importance. Innovation is becoming cruci
the continued vitality of industry. New products an
novations to existing projects are occurring with inc
ing rapidity while product lives decrease. In an efic
maintain a market share, companies are forced to re
project development time. By entering the market as «
as possible, the product life may be extended. Produc
velopment time may be reduced by product simplific:
or through better management of the development ac
ties. Our focus is on the latter.

Experience has shown that project management ha:
come more difficult, especially in the high-technolog’
dustries. A close observation of project activities st
that errors and inefficiencies increase as the size of
project grows. The successful performance of project t
are hindered by the following.

* Complexity: due to the number and degree of ir
actions among activities. For example, in a computer
sign project, a design engineer’s decision to use one

0162-8828/85/0900-0531$01.00 © 1985 IEEE

532

ticular integrated circuit may affect the supply of parts and
production of prototypes by the manufacturing people.

® Uncertainty: of direction due to the unknown state of
other activities and the environment. For example, the
gate-level design of a board may proceed for a while and
then be disrupted by the unavailability of a chip or newly
found bottlenecks in the module-level design.

* Change: in activities to be performed and products
to be produced, requiring project flexibility and adapta-
bility. Due to the technological nature of the engineering
design activities, a large number of activities is changed
along the learning curve. Often, a plan is generated in the
beginning only as a guide for the future planning.

Algorithms exist which address part of the project man-
agement problem. PERT [24] and CPM [20], [23] address
the scheduling problem, in particular, the detection of crit-
ical paths. Other techniques exist for the smooth assign-
ment of resources [41]. On the other hand, few, if any,
systems have addressed the problem of observing and ana-
lyzing the execution of activities, understanding how they
affect other activities, and managing these effects. These
are some of the issues which Callisto has addressed.

In addition to activity management, Callisto provides
support to

® product management: maintaining a current de-
scription of the product (which is usually the outcome of
a project), and determining the effects of changes to its
definition (e.g., engineering change orders); and

® resource management: acquisition, storage, and as-
signment of the many resources required to support a proj-
ect.

The purpose of this paper is to describe the theory of
activity representation embodied in Callisto. Only a por-
tion of this theory is described, that is, the representation
of state, activity, abstraction, aggregation, time, and
causality. Due to limitations in size, the representation of
authority, responsibility, and possession is not included in
this paper but can be found in [35].

The paper begins with an example from project man-
agement. Next, the foundation on which the theory is built
is described. This foundation is a layered representation
based upon the view described by Brachman [5]. Next, the
two main parts of the theory are described: representation
of states, activities, and goals; and the representation of
time and causality. Finally, we provide a discussion of the
relational abstraction.

II. A Prorect MANAGEMENT EXAMPLE

Let us use an example to explain the issues involved in
the semantics of project representation. Following is a
typical description of a project.

“The engineering development activity for a CPU
typically involves the development of specifications,
design on a CAD tool (the CAD tool is owned by the
manufacturing department which uses only a portion
of its capacity. The rest is used for other users and
preventive maintenance. In an earlier agreement, the
manufacturing department promised to give 60 per-

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-7, NO. 5, SEPTEMBER I

cent of the CAD tool’s use to the engineering de-
partment for designing Micro-84), and verification
of the board on test cases. A committee of hardware
engineers develops the specifications and assigns an
engineer to design and verify the board specifica-
tions. Hence, specification is followed by design and
verification. If verification is successful, the CPU is
released for prototype development. Otherwise, the
bug is located, the board is revised, and the design
is performed again.

“Mr. Jones, a project manager in the engineering
department, has been assigned the responsibility of
designing the Micro-84 CPU board. As it is not pos-
sible to cover all design aspects together, two mile-
stones have been set for developing versions one and
two of the board, respectively, and it is expected that
version two of the board will conform to the project
goals.

“The expected duration of the design activities
depends heavily on whether a new technology is used
for the design or not. As the decision on whether to
go with the new technology has not yet been made,
two schedules need to be developed, one with the
assumption that the design durations will be reduced
with the help of MCA’s and the other without the
MCA technology.”

This paragraph describes a set of activities for the de
sign of the Micro-84 CPU. It describes the sequence o
activities, their logical relationships, the product chang;
process, and the resources required. The following type:
of knowledge are required for scheduling or tracking the
progress of these activities:

® required activities

* durations for each activity

® activity precedence

* how activities are aggregated and abstracted

* conditions under which activities can be performed,
€.g., temporal relationship between specification and de-
sign (e.g., what if they overlap)

* logical connections among activities, e.g., design is
done if specification is completed or if verification fails

* individualization of schedules for the two versions of
the board, from a prototypical schedule

¢ representation of the two alternate schedules and ac-
tual dates for starting and finishing activities and for goals
and milestones

* representation of changes in the product, or changes
in the start or end dates (e.g., what happens when it is
decided that MCA’s are to be used for some portions and
hence durations need to be modified to an in between level)

*® resources required for each of these activities: engi-
neers, CAD tool, simulation software, and test examples

¢ the period of time during which the above resources
are required

¢ representation of constraints that restrict the usage of
the resources, e.g., the maintenance schedule and pre-
vious representations by other users on the CAD machine,
and the use of engineers for the next project

35

de-

of
1ge
pes
the

ed,
de-

n is
Is
s of

oals

ages
it is
and
avel)
‘ngi-
ples
irces

ze of
pre-
1ne,

SATHL er al.: REPRESENTATION OF ACTIVITY KNOWLEDGE FOR PROJECT MANAGEMENT 5:

* interactions with the user (e.g., could he use his own
terms instead of what we generate here?).

ITI. LAYERS OF REPRESENTATION

Given the above description, we now need to define the
project concepts in terms of their attributes and relations.
We need to define the engineering activities, their prece-
dence and resource constraints, as well as aggregations,
computer part descriptions, resource descriptions, own-
ership authority for resolving conflicts, and so on. The
model should define, for each of these, their attributes,
relations, and the information that flows between these
concepts based on their relationships. For example, if a
computer part is designed by an engineer, so are its com-
ponents.

It is natural to look for commonalities among these
concepts and linkages. For example, if the qgg:regation of
activities is in any way similar to the aggregation of com-
puter comporents, then a common. relation can be con-
structed to define the common definition of aggregation,
which can be specialized for the two applications. We
should be able to represent the domain dependent con-
cepts in terms of more worldly domain independent ones,
e.g., the concepts of time and causality for defining prec-
edence constraints. In this way, we can capture the un-
derlying meaning and semantics of relations and the re-
lated flow of information. Consequently, the meaning of
such models can be enhanced by combining the individual
concepts to form complex concepts. We also need an im-
plementation language for representing these concepts,
their linkages, and the information flow across these
relations.

The idea of a semantic representation of human knowl-
edge originated in Quillian’s thesis [29] in which concepts
are represented by networks. A distinguishing feature of
this work was the introduction of an “is-a” link which
defines taxonomic relations and the inheritance of attri-
butes from superconcepts to subconcepts in the hierarchy.
The concept of semantic networks evolved {371, [43] and
has been implemented in languages such as KLONE [4],
NETL [9], and [16]. In 1975, Minsky introduced the con-
cept of “frame.” A frame partitions a semantic network
into easily identifiable concepts. A variety of frame lan-
guages has been created including FRL [31], Concepts
[22], KRL [3], UNITS [39], and SRL [11], [44]. A num-
ber of researchers has contributed to the semantic network
approach to organizing knowledge.* Contributions from
{5] and [12] have led to the definition of five layers of
representation, as follows.

* Domain layer to provide concepts, words, and ex-
pressions specific to a domain of application.

* The conceptual layer which is comprised of models
of the common primitives; such as the concepts of time,
activity, state, agent, ownership, etc. These concepts are
common across domains and can, therefore, be used as

building blocks for modeling the domain specific con-
Ccepts.

*For a good review of the previous work, please refer to [5].

* The epistemological layer provides a way of regulat
ing the flow of information through inheritance (describe
in detail later in this section). This layer uses the concept
of set, prototype, levels of aggregation, and the structure
relations which link these concepts. It captures the struc
tural similarities across various concepts in the conceptua
layer.

* The logical layer defines the word concept as a col
lection of assertions (described in detail later in this sec
tion).

® The implementation layer which provides primitive
for machine interpretation of the concepts and the asser
tions.

Having provided an intuitive understanding of why eacl
of these layers is needed, we will now describe these lay
ers in detail. SRL [44] is the representation language usex
throughout this paper. We start with the implementatios
layer and define, as we go along, building blocks used i
the subsequent layers.

A. The Implementation Layer

The purpose of the implementation layer is to define the
lowest level data structures. The most basic, primitive rep-
resentation is a schema. Physically, a schema is composec
of a schema name (printed in bold font) and a set of slots
(printed in small caps). A schema is always enclosed by
double braces with the schema name appearing at the top

The slots can have values assigned to them.
{{activity
DURATION:

CosT:
DESCRIPTION:}}

Schema 1: The Activity Schema

For example, the activity schema is composed of a num-
ber of slots defining attributes of the activity such as du-
ration, cost, and description. The Micro-84-engineering
schema defines values for each of the slots defined in the
activity schema, e.g., cost of $2 000 000 and duration of
2 years.

{{Micro-84-engineering
creator: Mark

INSTANCE: activity

CcosT: $2,000,000

creation-date: 1-Aug-1984
DURATION: 2 years}}

Schema 2: The cpu-engineering Schema

Metainformation may be attached to any part of a
schema. It provides the user with a means of documenting
the information in a schema, and also for defining the se-
mantics of schema slots and values. In the cpu-engineer-
ing schema, the slots in italics are metainformation at-
tached to the schema, the slot or the value depending on
their indentation. In this example, the creator of the
schema is “Mark” and the creation-date of the value in
the cosr slot is Aug. 1, 1984.

B. The Logical Layer

The logical layer provides a logical interpretation of the
information stored in the schemata. In particular, a
schema-slot-value triplet is interpreted as an assertion
possessed by the schema (i.e., the attribute named by the

534

slot with the defined value). For example, “‘the project
CPU-engineering costs $20 000” is an assertion. Asser-
tions are grouped together (in a schema) to define a single
concept.

C. The Epistemological Layer

The epistemological layer distinguishes types of slots
and schemata. Prototype, individual, and set are distin-
guished schema types. Structural and taxonomic relations
(e.g., is-a) are distinguished slots. Schemata are defined
at this level with an acrive interpretation, e.g., slots and
values may be inherited from one schema to another over
a taxonomic relation, concepts, and their relationships.

Set, Individual, and Prototype: A set is a concept de-
fined as a collection of things that belong or are used
together [42]. An individual is a member of the set. The
concept set describes the group characteristics of the in-
dividuals in the set (i.c., statistics such as number, aver-
age, etc.). A prototype is a concept which describes the
standard or typical features of the members of a set. Thus,
the concept prototype contains the prototypical charac-
teristics of the individuals, while the individuals contain
their individual characteristics (either exceptions to the
prototypical characteristics or individual identifiers). Fig.
I depicts the relationship among the set, the prototype,
and the members of the set. The relations member-of and
has-member provide an aggregation of individuals to
form sets and are thus similar to the aggregation mecha-
nisms defined later in this section. The relation proto-
type-of links a prototype to a set. The relation is-a and
instance are described later in this section.

{{set
1S-A; concept
HAS-PROTOTYPE:
HAS-MEMBER:}}

Schema 3: The set schema

{{prototype
1S-A: concept
PROTOTYPE-OF:}}

Schema 4: The prototype schema
{{individual
1$-A: concept

INSTANCE:
MEMBER-OF:}}

Schema 5: The Individual Schema
{{prototype-of

IS-A: relation
INVERSE: has-prototype}}

Schema 6: The Protolype-of relation

Structural Relations: We would like to identify the
structural relations used to structure knowledge into
groups of concepts. While taxonomical links have been
commonly used in the representation of knowledge since
their introduction in Quillian’s work [29], other ways of
structuring knowledge have been explored by [5] and [12]
using relations to individuate, refine, and structurally ag-
gregate concepts. We will define these structural links and
how they differ from each other. Knowledge is structured
using six relations to provide defaults, classification,
elaboration, revision, individuation, and aggregation.

Central to the concept of these relations is the specifi-
cation of information which may be inherited from the
range to the domain. Fox [11] proposed that, for two con-

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.

PAMI-7, NO. 5, SEPTEMBI

prototype-o

PROTOTYPE
gr-of
membe
r a

instance
Fig. 1. The set, the prototype, and the individuals.

cepts related to each other, what is to be transferred
cluded, added, and/or modified cannot be modeled w
small set of classification relations (e.g., is-a, ako, vir
copy). What is needed is a set of primitives which ca
used to define the inheritance semantics for any relat

Brachman [6] reviewed the use of the relation is-a
pointed to the diversity and the related confusion ir
use of the relation is-a for semantic links {e.g., the us
is-a for subset/superset, generalization/specification,
ceptual containment, set membership, prototypes, etc.)
concluded that the most prevalent use of the is-a rela
seems to be as a default (assignment to a concept an
default properties through the is-a relation). That i
Clyde is an elephant, then he has properties typica
elephants. Our approach is to identify explicitly the
ferences among the various relations. Thus, the role of
relation is-a is reduced to the definition of default p:
erties. Thus, if prototype is-a concept, the assertion
the concept prototype inherit their default values from
relation schema. For example, in the sentence Jack
nice guy, the is-a relation is used to inherit the def
mannerism for Jack through his association with the ¢
cept of nice guy. We define the relation is-a to be a st
tural link such that, if 4 is-a B, A inherits all the proj
ties of B.> We define is-a to be reflexive (4 is-a
transitive (if A is-a B and B is-a C, then A is-a C), .
asymmetric (if 4 is-a B, B is not is-a A).* Ironically,
relation is-a is needed to define itself as a relation sc
to inherit all the characteristics of the concept relati
The instance relation used in the transitivity for is-g
defined later in this section. As shown below in the tr
sivitity slot, activity is-a concept if it is possible to gel
concept schema from activity schema while stepping alc
at most, one instance relation [i.e., (repeat (step insta:
1) 0 1)] followed by none or any number of is-a relat
steps [i.e., (repeat (step is-a #) 0 inf)]. The is-a-inclusic
spec specifies that all the slots which are not listed (.
is-a, instance, is-a + inv, or instance + inv) can be
herited along the is-a relation from the range to the ¢
main of the is-a relation.

{{is-a
15- A relation
INCLUSION: is-a-inclusion-spec
TRANSITIVITY:
{list (repeat (step instance t) 0 1)
(repeat (step is-a t) 0 inf))
COMMENT: "is-a defines default"}}

*In the implementation, we had to restrict the inheritance of the inv:
links to avoid circular loops.

*Refer to [44] for the syntax of transitivity slot in is-a schema.

1985

*X-
1a
al-
be

nd
he
of

He
on
its

of
lif-
‘he
p-
in
the

ult
m-
ac-

1),
ind
the

as
m.
s

to
mg
1ce
ion
-

in-
jo-

7erst

SATHI et al.:

{{is-a-inclusion-spec
INSTANCE: inclusion-spec
SLOT-RESTRICTION:
(not (or is-a instance is-a + inv instance + inv))}}

Schema 7: Theis-a Relation

Classification is defined in Webster’s dictionary [42] as
a systematic arrangement in groups or categories accord-
ing to established criteria. Classification is the process by
which a set is divided or partitioned into subsets on the
basis of some attribute value. It is important to note that
both the domain and the range of a classification are sets.
For example, manufacturing activity is a subset-of activ-
ity (classified on the basis of being an activity in the man-
ufacturing domain. In the inverse process, specific sets
can be combined to form more generic sets. We will use
has-subset to relate a set (domain) to its subsets (range).
The inverse of has-subset is subset-of. We will see later
how this process is different in its inheritance semantics
from aggregation and revision processes. In terms of in-
heritance semantics, subset-of-include shows the infor-
mation that can be inherited across the subset-of relation
(i.e., all slots except for subset-of and prototype-of and all
the values). The relation subset-of is transitive, asym-
metric, and nonreflexive.’

{{subset-of
1S-A: relation
INVERSE: has-subset -
DOMAIN: {type is-a sef)
RANGE: (schema (type is-a set))
INCLUSION: subset-of-incl
TRANSITIVITY: (repeat (step subset-of) 1 inf)
COMMENT: "subset-of defines classification'}}

Schema 8: The subset-of relation

{{subset-of-incl
INSTANCE: inclusion-spec
SLOT-RESTRICTION: (not (or subset-of
has-prototype))
VALUE-RESTRICTION: t}}

Schema 9: The subset-of-inclusions

The meaning of elaboration as given in Webster’s dic-
tionary is o expand something in detail. Thus, the pro-
cess of elaboration takes a concept and fills in details. De-
tails can be appended by adding assertions (e.g., slots with
values) to a concept. While classification relations operate
on sets, the elaboration relation operates on individuals
and prototypes. In our model, has-elaboration takes an
individual or prototype as domain and another individual
or prototype as range. The inverse of elaboration is ab-
straction which according to Webster’s dictionary is the
process of reducing specific information, and is repre-
sented by the relation elaboration-of. Both elaboration-
of and has-elaboration are transitive, asymmetric, and
reflexive.® The elaboration-of-inclusion schema defines
the information that is inherited along the elaboration-of

relation (i.e., all the slots except for elaboration-of and all
the values).

S.AS defined in the transitivity slot, manufacturing-activity is subser-of
act{vity if it is possible to get to the activity schema from the manufacturing-
activiry schema while stepping along at least one (1 to infinity) subset-of
relation.

'(‘AS defined in the transitivity slot, Micro-84-version-1 is elaboration-of
Micro-84 if it is possible to get to the Micro-84-version-1 schema from the

Micro-84 schema while stepping along zero or more (0 to infinity) elabo-
ration-of relations.

REPRESENTATION OF ACTIVITY KNOWLEDGE FOR PROJECT MANAGEMENT

53¢

{{has-elaboration
1$-A: relation
DOMAIN: (or (type is-a individual)
(type is-a prototype))
RANGE: (schema {or (type is-a individual)
{type is-a prototype}))
INVERSE: elaboration-of
TRANSITIVITY: (repeat (step has-elaboration t) 0 inf}}}

Schema 10: The Has-elaboration Relation

{{etaboration-of
1S-A:relation
DOMAIN: (or (type is-a individual)
(type is-a prototype))
RANGE: (schema (or (type is-a individual)
({type is-a prototype)))
INVERSE: has-elaboration
INCLUSION: elaboration-of-inclusion
TRANSITIVITY: {repeat (step elaboration-of t) 0 inf)
COMMENT: "elaboration-of defines abstraction"}}

Schema 11: The Elaboration-of Relation

{{elaboration-ot-inclusion
1S-A:relation
SLOT-RESTRICTION: {not elaboration-of)
VALUE-RESTRICTION: t}}

Schema 12: The Elaboration-of-inclusion

Aggregation is ro collect or gather into a whole. The
emphasis in aggregation is toward combining the parts to
make a whole. The parts could belong to different sets or
instances of sets. The disaggregates are part-of the ag-
gregate concept. Parts inherit some attributes from their
aggregation (e.g., ownership), others are aggregated (e.g.,
cost), or averaged (e.g., performance). For example, CPU-
specification is part-of the CPU-engineering-network.
The inverse of part-of is has-part. The part-of relation
is reflexive as well as transitive, although asymmetric
(similar to the elaboration-of relation, described above).

{{part-of
i1S-A: relation
DOMAIN: (or {type is-a individual)
(type is-a prototype))
RANGE: (schema (or (type is-a individual)

(type is-a prototype)))
INVERSE: has-part

TRANSITIVITY: (repeat (step part-of t) Oinf)
COMMENT: "part-of defines aggregation”}}

Schema 13: The Part-of Relation

Revision as defined in Webster’s dictionary is to make
a new amended, improved, or up-to-date version. Thus,
the process of revision converts a range object into a do-
main object by adding improvements in its representation.
Here, both the range and the domain need to be at the
same level of aggregation and belong to the same set of
concepts for a meaningful revision. Revisions can be in-
troduced by adding or transforming slots. For example,
version 2 of Micro-84 is a revision-of version I. Both ver-
sion 1 and 2 are at the same level of aggregation. As op-
posed to elaboration, revision is a transformation process,
and thus describes a progression in time. The inverse link
is revised-by and it does not conceptually represent a pro-
cess. The relation revision-of is transitive, asymmetric,
and nonreflexive (similar to the subset-of relation).

{{revision-of
iS-A: relation
DOMAIN: (or (type is-a prototype)
(type is-a individual))
RANGE: (schema {or (type is-a prototype)
(type is-a individual)}))

INVERSE: revised-by
TRANSITIVITY:

(repeat (step revision-of t) 1inf)}}

Schema 14: The Revision-of Relation
Individuation is rhe development of the individual from
the universal [5] and is represented by the instance rela-

534

slot with the defined value). For example, “the project
CPU-engineering costs $20 000 is an assertion. Asser-
tions are grouped together (in a schema) to define a single
concept.

C. The Epistemological Layer

The epistemological layer distinguishes types of slots
and schemata. Prototype, individual, and set are distin-
guished schema types. Structural and taxonomic relations
(e.g., is-a) are distinguished slots. Schemata are defined
at this level with an acrive interpretation, e.g., slots and
values may be inherited from one schema to another over
a taxonomic relation, concepts, and their relationships.

Set, Individual, and Prototype: A set is a concept de-
fined as a collection of things that belong or are used
together [42]. An individual is a member of the set. The
concept set describes the group characteristics of the in-
dividuals in the set (i.e., statistics such as number, aver-
age, etc.). A prototype is a concept which describes the
standard or typical features of the members of a set. Thus,
the concept prototype contains the prototypical charac-
teristics of the individuals, while the individuals contain
their individual characteristics (either exceptions to the
prototypical characteristics or individual 1dentifiers). Fig.
1 depicts the relationship among the set, the prototype,
and the members of the set. The relations member-of and
has-member provide an aggregation of individuals to
form sets and are thus similar to the aggregation mecha-
nisms defined later in this section. The relation proto-
type-of links a prototype to a set. The relation is-a and
instance are described later in this section.

{{set
IS-A: concept

HAS-PROTOTYPE:
HAS-MEMBER:}}

Schema 3: The setschema

{{prototype
1S-A: concept
PROTOTYPE.OF:}}

Schema 4: The prototype schema
{{individual
1S-A: concept
INSTANCE:
MEMBER-OF:}}

Schema 5: The Individual Schema
{{prototype-of

1S-A:relation
INVERSE: has-prototype}}

Schema 6: The Prototype-of relation

Structural Relations: We would like to identify the
structural relations used to structure knowledge into
groups of concepts. While taxonomical links have been
commonly used in the representation of knowledge since
their introduction in Quillian’s work [29], other ways of
structuring knowledge have been explored by [5] and [12]
using relations to individuate, refine, and structurally ag-
gregate concepts. We will define these structural links and
how they differ from each other. Knowledge is structured
using six relations to provide defaults, classification,
elaboration, revision, individuation, and aggregation.

Central to the concept of these relations is the specifi-
cation of information which may be inherited from the
range to the domain. Fox [11) proposed that, for two con-

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-7, NO. 5, SEPTEM

Fig. 1. The set, the prototype, and the individuals.

cepts related to each other, what is to be transferre
cluded, added, and/or modified cannot be modeled
small set of classification relations (e.g., is-a, ako, v
copy). What is needed is a set of primitives which «
used to define the inheritance semantics for any rel:

Brachman [6] reviewed the use of the relation is-
pointed to the diversity and the related confusion
use of the relation is-a for semantic links (e.g., the"
is-a for subset/superset, generalization/specification
ceptual containment, set membership, prototypes, etc
concluded that the most prevalent use of the is-a re
seems to be as a default (assignment to a concept a
default properties through the is-a relation). That
Clyde is an elephant, then he has properties typic
elephants. Our approach is to identify explicitly th
ferences among the various relations. Thus, the role .
relation is-a is reduced to the definition of default
erties. Thus, if prototype is-a concept, the assertic
the concept prototype inherit their default values fro.
relation schema. For example, in the sentence Jach
nice guy, the is-a relation is used to inherit the d¢
mannerism for Jack through his association with the
cept of nice guy. We define the relation is-a to be a s
tural link such that, if 4 is-a B, A inherits all the pr
ties of B.> We define is-a to be reflexive (4 is-a
transitive (if A is-a B and B is-a C, then A4 is-a C),
asymmetric (if A is-a B, B is not is-a A2 Ironically
relation is-a is needed to define itself as a relation ¢
to inherit all the characteristics of the concept relal
The instance relation used in the transitivity for is
defined later in this section. As shown below in the i
sivitity slot, activity is-a concepr if it is possible to g
concept schema from activiry schema while stepping a
at most, one instance relation [i.e., (repeat (step inst;
1) 0 1)] followed by none or any number of is-a rel:
steps [i.e., (repeat (step is-a £) O inf)]. The is-a-inclus
spec specifies that all the slots which are not listed (
is-a, instance, is-a -+ inv, or instance -+ inv) can be
herited along the is-a relation from the range to the
main of the is-a relation.

{{is-a
1S-A: relation
INCLUSION: is-a-inclusion-spec
TRANSITIVITY:
(list (repeat (step instance 1) 0 1)
(repeat (step is-a t) 0 inf))
COMMENT: "is-a defines defauit"}}

*In the implementation, we had to restrict the inheritance of the ir
links to avoid circular loops.

*Refer to [44] for the syntax of transitivity slot in is-a schema.

e

w

== I ¢ IRV \= R

5€

SATHI et al.: REPRESENTATION OF ACTIVITY KNOWLEDGE FOR PROJECT MANAGEMENT

{{is-a-inclusion-spec
INSTANCE: inclusion-spec
SLOT-RESTRICTION:
(not {oris-a instance is-a + inv instance + inv))}}

Schema 7: Theis-a Relation

Classification is defined in Webster’s dictionary [42] as
a systematic arrangement in groups or categories accord-
ing to established criteria. Classification is the process by
which a set is divided or partitioned into subsets on the
basis of some attribute value. It is important to note that
both the domain and the range of a classification are sets.
For example, manufacturing activity is a subset-of activ-
ity (classified on the basis of being an activity in the man-
ufacturing domain. In the inverse process, specific sets
can be combined to form more generic sets. We will use
has-subset to relate a set (domain) to its subsets (range).
The inverse of has-subset is subset-of. We will see later
how this process is different in its inheritance semantics
from aggregation and revision processes. In terms of in-
heritance semantics, subset-of-include shows the infor-
mation that can be inherited across the subset-of relation
(i.e., all slots except for subset-of and prototype-of and all
the values). The relation subset-of is transitive, asym-
metric, and nonreflexive.’

{{subset-of
1S-A: relation
INVERSE: has-subset ~
DOMAIN: (type is-a set)
RANGE: (schema (type is-a set))
INCLUSION: subset-of-incf
TRANSITIVITY: (repeat (step subset-of t) 1 inf)
COMMENT: "subset-of defines classification"}}

Schema 8: The subset-of relation

{{subset-of-incl
INSTANCE: inclusion-spec
SLOT-RESTRICTION: (not (or subset-of
has-prototype))
VALUE-RESTRICTION: t})}

Schema 9: The subset-of-inclusions

The meaning of elaboration as given in Webster’s dic-
tionary is t0 expand something in detail. Thus, the pro-
cess of elaboration takes a concept and fills in details. De-
tails can be appended by adding assertions (e.g., slots with
values) to a concept. While classification relations operate
on sets, the elaboration relation operates on individuals
and prototypes. In our model, has-elaboration takes an
individual or prototype as domain and another individual
Or prototype as range. The inverse of elaboration is ab-
straction which according to Webster’s dictionary is the
process of reducing specific information, and is repre-
sented by the relation elaboration-of. Both elaboration-
of and has-elaboration are transitive, asymmetric, and
reflexive.® The elaboration-of-inclusion schema defines
the information that is inherited along the elaboration-of

relation (i.e., all the slots except for elaboration-of and all
the values).

°As defined in the transitivity slot, manufacturing-activity is subset-of
activity if it is possible to getto the activity schema from the manufacturing-
activity schema while stepping along at least one (1 to infinity) subset-of
relation.

.6AS defined in the transitivity slot, Micro-84-version-1I is elaboration-of
Micro-84 if it is possible to get to the Micro-84-version-I schema from the

Mic.ro»84 schema while stepping along.zero or more (0 to infinity) elabo-
Fation-of relations.

535

{{has-elaboration
1S-A: relation
DOMAIN: (or (type is-a individual)
(type is-a prototype))
RANGE: (schema (or (type is-a individual)
(type is-a prototype)))
INVERSE: elaboration-of
TRANSITIVITY: (repeat (step has-elaboration 1) Q inf)}}

Schema 10: The Has-elaboration Relation

{{etaboration-ot
IS-A: relation
DOMAIN: (or (type is-a individual)
{type is-a prototype))
RANGE: (schema (or (type is-a individual)
(type is-a prototype)))
INVERSE: has-elaboration
INCLUSION: elaboration-of-inclusion
TRANSITIVITY: (repeat (step elaboration-of t) Oinf)
COMMENT: "elaboration-of defines abstraction"}}

Schema 11: The Elaboration-of Relation

{{elaboration-of-inclusion
1S-A: relation
SLOY-RESTRICTION: (not elaboration-of)
VALUE-RESTRICTION: t}}

Schema 12: The Elaboration-of-inclusion

Aggregation is 1o collect or gather into a whole. The
emphasis in aggregation is toward combining the parts to
make a whole. The parts could belong to different sets or
instances of sets. The disaggregates are part-of the ag-
gregate concept. Parts inherit some attributes from their
aggregation (e.g., ownership), others are aggregated (e.g.,
cost), or averaged (e.g., performance). For example, CPU-
specification is part-of the CPU-engineering-network.
The inverse of part-of is has-part. The part-of relation
is reflexive as well as transitive, although asymmetric
(similar to the elaboration-of relation, described above).

{{part-of
IS-A: relation
DOMAIN: {or (type is-a individual)
(type is-a prototype))
RANGE: (schema (or (type is-a individual}
(type is-a prototype)))
INVERSE: has-part
TRANSITIVITY: {repeat (step part-of t) O inf)
COMMENT: "part-of defines aggregation”}}

Schema 13: The Part-of Relation

Revision as defined in Webster’s dictionary is to make
a new amended, improved, or up-to-date version. Thus,
the process of revision converts a range object into a do-
main object by adding improvements in its representation.
Here, both the range and the domain need to be at the
same level of aggregation and belong to the same set of
concepts for a meaningful revision. Revisions can be in-
troduced by adding or transforming slots. For example,
version 2 of Micro-84 is a revision-of version I. Both ver-
sion 1 and 2 are at the same level of aggregation. As op-
posed to elaboration, revision is a transformation process,
and thus describes a progression in time. The inverse link
is revised-by and it does not conceptually represent a pro-
cess. The relation revision-of is transitive, asymmetric,
and nonreflexive (similar to the subset-of relation).

{{revision-ot
1S-A: relation
DOMAIN: (or (type is-a prototype)
(type is-a individual})
RANGE: (schema (or (type is-a prototype)
(type is-a individual}))

INVERSE: revised-by
TRANSITIVITY:

(repeat (step revision-of t) 1 inf)}}

Schema 14: The Revision-of Relation
Individuation is the development of the individual from
the universal [5] and is represented by the instance rela-

536 IEEE TRANSACTIONS ON

tion. It can be interpreted as a copy of the prototype with
an individual name and exceptions, if any. For example,
CPU-engineering is the process of engineering develop-
ment of a CPU, while CPU-engineering %1 is an instance
of CPU-engineering for building the first version of Mi-
cro-84 CPU.
{{instance)
1S-Alrefation
DOMAIN: {type is-a individual)

RANGE: {(schema (typz is-a prototype))
INCLUSION: instance-inclusion}}

Schema 15: The Instance Schema

{{instance-inclusion
INSTANCE: inclusion-spec
SLOT-RESTRICTION: {not {or prototype-of subset-of is-a
is-a + inv instance + inv))
VALUE-RESTRICTION: t}}

Schema 16: The instance-inclusion spec

As we go on to develop relations for specialized needs,
we find that these relations can inherit the inheritance se-
mantics from more generic relations. For example, if the
aggregation process in objects is similar to the aggrega-
tion process in activities, then their commonalities can be
represented using a domain independent part-of relation,
from which each of the relations, specific to activities and
objects, inherits the common inheritance semantics and
adds to it what is specific to activities or objects. Thus,
we begin to build a hierarchy of these relations, starting
from the most general concepts like classification and ab-
straction, to more and more specific relations. Such rela-
tions (e.g., sub-activity-of and sub-state-of, in Section
IV-A and IV-B, respectively) are defined in the semantic
layer.

D. The Semantic Layer

The semantic layer contributes to the depth of repre-
sentation by facilitating inheritance of the underlying
common knowledge. For example, all types of activities,
whether design or verification, engineering or manufac-
turing, share common information, such as cost, duration,
and responsibility. They have similar underlying notions
of causality, time relationships, resource possessions, and
milestones. We therefore need a common definition of ac-
tivity which can be used for further defining specific ac-
tivities.

The concepts in the semantic layer can be classified into
three major categories: action related, object related, and
agent related. The action related primitives include con-
cepts of activity, state, causation, and temporal relations.
The definition of object includes its refinements and dis-
aggregations and the theory of change. Constraints can be
imposed on the definition of action or object related prim-
itives. The agents possess and own objects and are orga-
nized through authority structures.

In the foliowing sections, we will describe, in detail,
the definition and representation for activity, state, time,
and causality. We will build a theory for each of these
concepts which brings forth a general definition of the
concept. The semantic layer is defined using the concepts
of inheritance and structare defined in the epistemological
layer.

PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-7, NO. 5, SEPTEMB

E. The Domain Layer

For the project management example (see Sectio
we need to define the concepts of specification, desig
verification activities, and their relationships, the
puter parts, the engineering and manufacturing d
ments, and the contracts between them on the usage
CAD machine. These terms can now be defined
more easily using the epistemological concepts and tl
mantic definition of activities, objects, and agents
addition of a new domain only requires the additi
domain specific concepts and their definition in ter
the epistemological and semantic layers.

1V. THE THEORY OF AcTiviTy, STATE AND Goa

Much of Callisto’s capabilities rely upon de
knowledge of both activities and the conditions 1
which they can be performed. For example, plannin
quires a representation for each activity, and know
of resources consumed and produced by each activi
order to select and deduce precedence (i.e., sequ
them). To support hierarchical reasoning, activities
be represented at multiple levels of abstraction. Sch
ing uses the same knowledge as planning, but in adc
requires time information, and knowledge of altern:
(e.g., activities, substitutable resources) for situatio
which certain resources are not available at the spec
time. Chronicling is the facility for specifying activity
tus. It analyzes the implementation of the schedules
tects problems, such as deviations and interactions,
attempts to repair them. In order to perform this task
chronicling system must distinguish among various
sions of activities, including the predicted ones create
scheduling and the actual ones performed by the pro
It must also have knowledge of how the predicted ac
ties constrain the project and what must be done to r«
any deviations.

A. Theory of Activity

First, we need to define the concept of activity.
definition should include the type of tasks that cai
called activities, relationships among them and with §

ect goals, and issues of aggregation and abstraction
the example

.- - @ project manager has been assigned the respor
sibility of designing the Micro-84 CPU Board. Thi
design involves development of specifications, de
sign on a CAD tool, and verification of the board o
test cases.

Are all of these activities? How is the overall project
lated to these activities? How are the goals set? Fin:
how is their disaggregation done by the project man:
and by others in the organization?

Considerable research has been done in defining the
lating activities or acts in natural language systems, p
lem solving systems, and in linguistics and philosop

"For an excellent review, please refer to [2].

35

ISt

air

his
be
0j-
In

ly,
ger

re-

g
1y

SATHI er al.: REPRESENTATION OF ACTIVITY KNOWLEDGE FOR PROJECT MANAGEMENT 537

These works provide useful insights into the hierarchical
representation of activities and in representing the prereq-
uisites and results of an activity. Allen [2] has developed
a theory of action, which is by far the most general and
includes actions involving nonactivity, actions which are
not easily decomposable, and actions which occur simul-
taneously.

We define the activity as the basic unit of action in the
project management environment. The project manager
starts with a project activity® assigned to him, disaggre-
gates the project into a set of subactivities, the execution
or completion of which leads to the completion of the proj-
ect. An activity is a transformation of the world from one
situation or state to another [25] which, directly or indi-
rectly, carries the project from the starting state toward
the goal state.

1) Aggregation and Abstraction: Activities are often
defined at many levels of abstraction. Sacerdoti (321, [33}
constructed a system which stratified activities by the re-
moval of conditions. The choice of condition was based
on “importance.” In the NONLIN system, Tate [40] de-
veloped a “task formalism,” which described various ac-
tions, preconditions, and precedences. The NONLIN Sys-
tem expanded these high-level descriptions into detailed
plans. In the task formalism, the supervised conditions
were differentiated from others as they involved details
that could be expanded by the planning system (and thus,
involved no interaction with the other high-level activi-
ties). In order to facilitate different levels of aggregation,
[13] used sub-activity-of which provides disaggregation
of activities. The relation refined-by was used by some
researchers [8], [12] to connect activities to their detailed
counterparts.

We use the epistemological layer concepts to model the
relationship between CPU-engineering and CPU-specifi-
cation, CPU-design, and CPU-verification activities in our
example. None of the relations, mentioned by the re-
searchers above, seems appropriate for relating CPU-de-
sign to CPU-specification. It is not just an elaboration, be-
Cause elaboration involves an expansion of an object into
another, where both are at the same level of aggregation.
It is not a disaggregation (as implicitly stated in the sub-
activity-of relation of Goldstein), because CPU-engineer-
ing is not at the same level of detail (or abstraction) as
CPU-specification. In other words, the different levels of
specificity [32], [40] and and/or aggregation [17] coexist
in the specification of activities.

Thus, we should be using both aggregation and elabo-
ration. An activity is elaborated to an aggregate activity
(an activity network), which then has activities, which are
part-of the aggregate activity. For example, the CPU-en-
§ineering activity has an elaboration, CPU-engineering-
hetwork which, in turn, has three activities CPU-specifi-
cation, CPU-design, and CPU-verification as part-of

*A project activity in the cengineering design context starts with a plan
to produce a new product and ends with the first revenue shipment of the
Product. It has a goal to design the product; while the starting point is an
abstract concept in the mind of the design initiator.

CPU-engineering-network. The elaboration-of relation
helps in the separation of the single activity, CPU-engi-
neering, from its detailed description, thus facilitating de-
scriptions at different levels of abstraction or multiple
elaborations of the same activity. For example, as in [40],
the activity CPU-engineering describes all the interactions
with the other activities (outside the CPU-engineering-
network), while the interactions within the CPU-engineer-
ing-network are hidden at the level of the high-level activ-
ity, CPU-engineering (see Section IV-B and Fig. 2).

We will discuss inheritance issues related to activity ag-
gregation next, and issues related to temporal aggrega-
tion in Section V-A. The SRL representation of the con-
cept activity is as follows:

{{activity
ELABORATION-OF:
Range: (schema (type is-a activity))
HAS-ELABORATION:
Range: (schema (type is-a activity))
PART-OF:
Range: (schema {type is-a activity))
COST:
DURATION:}}
Schema 17: The Activity Schema

An activity should inherit information from other activ-
ites in higher and lower levels of abstraction. For example,
if the activity CPU-engineering is the responsibility of a
project manager, he is also responsible for CPU-specifi-
cation, CPU-design, and CPU-verification activities. Also,
the cost of executing CPU-engineering should be the ag-
gregation of the cost of its lower level activities. As these
various types of inheritances are specific to the activity
world, it is inappropriate to include them in the definition
of the part-of relation. We define the sub-activity-of re-
lation, which acts like part-of, for aggregating activities.
Its inverse is the relation has-sub-activity.

There are two types of information flow across the ag-
gregation levels. First, the inheritance of information by
lower level activities from the higher levels. Inheritance
flows from the range to the domain via the sub-activity-
of relation and the inclusion specifications in SRL. Sec-
ond, the higher level activities aggregate information e.g.,
cost) from lower levels (through a many-to-one map spec-
ification, has-sub-activity-map).® This aggregation of in-
formation can be represented in the sub-activity-of rela-
tion:

{{sub-activity-of
is-A: part-of
INVERSE: has-sub-activity
INCLUSION: sub-activity-of-inci
DOMAIN:
Range: (type is-a activity)
BANGE:
Range: (type is-a activity)}}
Schema 18: The sub-activity-of Relation
{{sub-activity-of-incl

1S4 inctusion-spec
SLOT-RESTRICTION:(Or priority responsibility-of)}}

Schema 19: Inclusions in sub-activity-of

{{has-sub-activity
1S-A: has-part
MAP: has-sub-activity-map}}

Schema 20: The has-sub-activity Relation

“We will later return to aggregation (of activity status) while describing
the representation of state.

538

Here, has-sub-activity-map defines what can be aggre-
gated along the has-sub-activity relation, while sub-ac-
tivity-of-incl defines the information that can be inherited
along the sub-activity-of relation. The schema description
of sub-activity-of-incl states that the slots “priority”” and
“responsibility-of ”” can be inherited by a subactivity from
its superactivity.

The has-elaboration relations can be used to link an
abstract activity to a detailed activity network. These re-
lations are useful in multiuser communication situations
where an activity at one level of description needs to be
elaborated into its components at a lower level. For ex-
ample, the engineering manager thinks of CPU-engineer-
ing as a single activity with no further disaggregations.
The same activity is an aggregate activity further decom-
posed into CPU-specification, CPU-design, and CPU-veri-
fication activities in the eyes of the project manager deal-
ing with these activities. The relation elaboration-of,
which relates a detailed aggregate activity (CPU-engi-
neering-network) to the abstract activity (CPU-engineer-
ing), suffices in its inheritance definition, as it inherits all
information from the abstract to the elaborated concept
(see Fig. 2).

How are the activities aggregated? It is not necessary
for the aggregation to the conjunctive only. In real life,
very often managers refer to disjunct aggregations. (The
design can be done either by design on a CAD machine or
on a bread-board.) The aggregate activity, therefore,
could be a conjunctive or disjunctive aggregation of its
components. The schema for aggregate activity contains
a type slot to provide this information.

{{aggregate-activity
1S-A: activity
TYPE:
Range: {or "and” "or” "xor")

HAS-SUB-ACTIVITY:
ELABORATION-OF:}}

Schema 21: The Aggregate Activity Schema

{{cpu-engineering-network
IS-A: aggregate-activity
TYPE: "and”
HAS-SUB-ACTIVITY: cpu-specification cpu-design
cpu-verification
ELABORATION-OF: cpu-engineering}}

Schema 22: The cpu-engineering-network Schema

Is it necessary for an activity to be part of one and only
one aggregate activity? While the project manager consid-
ers CPU-specification, CPU-design, and CPU-verification
as parts of a project, a design engineer would probably
consider the CPU-design as a part of various design activ-
ities to be done. In the organizational environment, it is
common to find that quality control and the material de-
partments aggregate activities in different ways. Similarly,
there can be multiple elaborations of the same activity,
each emphasizing different aspects of the activity. For ex-
ample, the overall activity CPU-engineering may have al-
together different components for the CAD and physical
space designers, respectively. Each of these elaborations
refers to the same abstract activity. As specified, the ac-
tivity representation is capable of dealing with multiple
ways of aggregation and elaboration.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-7, NO. 5, SEPTEM

activity

is-a

elaborhtion-of

aggregate
activity

cpu
verifi-
cation

specifi-
cation

design

Fig. 2. Activity aggregation and abstraction.

B. Theory of State

The next problem to be settled is the representa
conditions under which an activity may be performe
the new conditions produced by the activity. In ¢
ample, CPU-design activity is started when CPU-s
cation is completed or if CPU-verification fails,
project management tasks, such arbitrarily comple
ditions involving logical constructs should be repre
by the activity model.

Let us start with the definition of a state. Hendri
described a state of the world model “like a still ;
graph of a dynamic situation, representing objects a
relationships among objects as they exist the mome
photograph is taken.”” In project management, we
that the concept of state (or event as used in PERT
models [20], [23]) was even more general and inc
state of beings over time (similar to the definition
uations in [17]). Thus, state defines a fact which hc
of some point in time (e.g., CPU-specification is corr
or for a period of time (e.g., possession of CAD mz
for the duration of CPU-design)."

1) State Aggregation: In the world of project &
ties, we would like to use states as a way of represe
alternative scenarios or situations in which an activit
be executed, as well as the resulting alternative outce
Thus, using superimposed logical structures [17], dif
scenarios required for executing the activity are com
to form a composite state, which enables the activity
overall logical structure holds whenever any of its
stituent alternative situations holds. We therefore h
relative representation of the type “if . . . then sta
activity.”” For example, CPU-design can be done

"®We would like to point out here that PERT/CPM representati
nored the state of being over time in their representation of events.
ever, the only difference between the two js temporal. As we have
sociated temporal issues from the causal issues, it is now possible to cc
them and thus use a more general view of state. We will discuss the .
underlying temporal differences later in Section V-A.

the
the
ind
°M
ied
sit-
; as
te)
ine

n ig'
How-
jisas-
nbine
alient

i

SATHI er al.: REPRESENTATION OF ACTIVITY KNOWLEDGE FOR PROJECT MANAGEMENT

completing CPU-specification, or if CPU-verification fails
and requires a CAD machine. This implies that CPU-de-
sign can not be executed unless this composite state of the
world is true.'’

The new condition produced by the activity is the caused
state which is an aggregation of different alternatives
caused by the activity. The schema representation of the
activity can now be extended to include the state links

{{activity

HAS-SUB-ACTIVITY:

Range: (schema (type is-a activity))
SUB-ACTIVITY-OF:

Range: (schema (type is-a activity))
ENABLED-BY:

Range: (schema (type is-a state))
CAUSE:

Range: {schema (type is-a state)}

COST:
DURATION: }}

Schema 23: The Modified Activity Schema

The relations enabled-by and cause (which link an ac-
tivity to its enabling and caused states, respectively) are
defined later in Section V-B.

Let us now look at the CPU-design activity in the ex-
ample introduced earlier. The schema representation of the
CPU-design activity is given below. The aggregated en-
abling state is start-CPU-design which enables the CPU-
design activity. The CPU-design-complete state is caused
by the CPU-design activity and represents the logical ag-
gregation of the possible alternative outcomes.

{{cpu-design
1S-A: activity .
ENABLED-BY: start-cpu-design
CAUSE: cpu-design-complete
SUB-ACTIVITY-OF: cpu-engineering-network

COosT: 200,000
DURATION: 120 days}}

Schema 24: The cpu-design Activity Schema

Let us fook at the example again.

The design (is done) on a CAD tool . . . specification
is followed by design ... if verification fails . .. de-
sign is performed again.

Thus, CPU-design is done when CPU-specification is
completed or CPU-verification fails and requires a CAD
machine for the duration of the CPU-design. We need to
disaggregate stari-CPU-design to represent these logical
relationships. As with the aggregation of the activities,
the aggregation of states can also be accomplished by the
part-of relation or its elaboration. We use the has-sub-
state relation (with its inverse sub-state-of) to link an ag-
gregate state to its disaggregates. Hence, possession of
the CAD machine is a substate of the enabling state start-
CPU-design. The relation has-sub-state can be used to
determine whether the composite state holds (this is done
by associating the logic of state propagation with the map-
spec of the has-sub-state relation in SRL). The sub-state-
of relation is a part-of with the addition of the appropriate

truth propagation algorithm (described later in Section
V-B

“The problem of causality is dealt with in Section V-B, which gives a
definition of the ““true” state, its propagation as well as the roles of rela-
tions enabled-by and cause.

{{sub-state-of
15-A: part-of
INVERSE: has-sub-state
DOMAIN:
Range: (schema (type is-a state))
RANGE:
Range: {schema (type is-a state))
INTRODUCT!ON: sub-state-propagation-action}}

Schema 25: The sub-state-of relation

States of the world represent completion of activites,
possession of resources, milestones that must be met, their
aggregations, etc. While any of these states could be as-
sociated with an activity, their roles and characteristics dif-
fer. For example, the possession of resources is repre-
sented by states which hold (or are “true’) for a duration
of time, while completion of activities is a one-shot situ-
ation [30]. A classification of states is required to prop-
erly represent the different types of logical preconditions
and aggregations. Fig. 3 depicts this classification which
shows two major classes of states—aggregate states and
leaf states. The aggregate state could be an or (disjunct),
which is true if any of its substates is true, or an and
(conjunct), where all of its substates should be true to
make the and state true. The leaf states are further clas-
sified into status predicates, depicting facts related to ac-
tivities status, and possess predicates, depicting posses-
sion of resources for the duration of the activity. The ratio-
nale for differentiating between status predicates and pos-
sess predicates will be discussed later in the theory of time
(see Section V-A).

Returning to our example, the states—CPU-spec-com-
plete- and CPU-verification-failed—are’ aggregated by a
disjunct or-CPU-design state. The state start-CPU-design
1s a conjunct of the or-CPU-design and possess-CAD-ma-
chine. The schema representation of these states is as fol-
lows:

{{start-cpu-design
1S-A: and-state
ENABLE: cpu-design
HAS-SUB-STATE: or-cpu-design possess-CAD-machine

Schema 28: The start-cpu-design Schema

{{or-cpu-design
1S-A: or-state
SUB-STATE-OF: start-cpu-design
HAS-SUB-STATE: cpu-spec-complete
cpu-verification-failed} }
Schema 27: The or-cpu-design Schema
{{possess-CAD-machine
1S-A: possess-predicate .
SUB-STATE-OF: start-cpu-design
REQUIRE: CAD-machine
RESOURCE-UTILIZATION: 100}}

Schema 28: The possess-CAD-machine Schema

We refer to this aggregation of states as stare trees. Fig.
4 shows the enabling state tree described before. The en-
abling state tree, the activity and the caused state tree
together define when an activity can be done, what it does
and the results it delivers. An activity cluster is an ag-
gregate concept composed of an activity, an enabling tree,
and a caused tree. Later sections will further describe this
concept and its use as a partition [17].

2) State Abstraction: There is a need to map state in-
formation across the levels of activity hierarchy, thus eas-
ing the process of project monitoring. For example, the

540

Aggregate
State

ea
State
Status
Predicate

Fig. 3. The state classification hierarchy.

Possess
Predicate

activity

and-state is-a

is-a enable

sub-stateg-of

or-state subsstate-of possess-predicate

possess-
CAD-machine
status-predicate

sub-sta status-predicate

€-of sub>~gtate-of
is-a)} Cpu-spec cpu= is-a
complete erificatio

Fig. 4. State aggregation for CPU design.

abstract activity, CPU-engineering, starts when CPU-
specification is started, and is completed when CPU.ver-
ification is completed successfully.

The abstraction of state information is almost identical
to the abstraction of activities described before in Section
IV-A. We need to map the starting of the disaggregate ac-
tivities to the starting of the abstract activity. Thus, the
enabling states of the initial activities form an enabling
network, using sub-state-of with conjuncts and disjuncts.
This enabling network is an elaboration of the enabling
state of the abstract activity. For example, if CPU-speci-
fication were a possible starting point for the CPU-engi-
neering activity, the start-CPU-engineering-network,
maps the start of start-CPU-engineering to the start of
CPU-specification (see Fig. 5).

{{or-state
1S-A! aggregate-state
HAS-SUB-STATE:
SUB-STATE-OF:
ELABORATION-OF:}}

Schema 29: The Or State Schema

{{start-cpu-engineering-network
1S-A: or-state
HAS-SUB-STATE: start-cpu-specification
start-cpu-design
ELABORATION-OF: start-cpu-engineering}}

Schema 30: The start-design-CPU-network Schema

C. Goals

The project management task begins with a statement
of goals. These goals guide the construction of the proj-
ect’s activity/state network. Two basic types of goals have
been distinguished: goals which define the milestone states
on the performance of the project and its completion, and
goals which constrain performance of activities (e.g., con-
straints on time or money to spend on an activity).

State goals are represented in the same form as states.
The top of this hierarchy defines the project goals, break-

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-7, NO. 5, SEPTEM;

activi
status
predicate 5<%
i:T}\start>cpu enable))
. . engineering
engineering

tion-of e]aborrtiomof

start-cpu-
engineering
network

engineering
network

status
predicate
is-a
is-a™ start-cpu- enable ;
specifi-. specifi-
cation cation

Fig. 5. Aggregation and abstraction of states.

ing them into milestones for smaller time periods
structure of the goal hierarchy is similar to the strt
of the state hierarchy, with part-of relations to pr
aggregations and elaboration-of to elaborate the goa
a network of goals/milestones. A network of goals -
gregated into an aggregate-goal using the part-of
tion, wherein goal information can be summed or
aged.

{{goal-state
1S-A: state}}

Schema 31: The Goal state schema

{{aggregate-goal
TYPE:

Range: (or and or xor)
HAS-PART:

Range: (type is-a goal-state})
ELABORATION-OF:

Range: (type is-a goal-state)}}

Schema 32: The Aggregate Goal Schema

These goal states also need to be linked to the activ:
Whenever an activity is linked to a goal state, its cor.
tion must lead to the satisfaction of the goal state.
example, ih Fig. 6, Milestone-2 is a goal-state linke
the activity, CPU-engineering. Whenever, CPU-engir
ing is completed, it should satisfy the specificatior
Milestone-2. The relation must-satisfy is used to li
caused state to a milestone state.

{{must-satisty
1S-A: relation
DOMAIN: (type is-a state)
RANGE: {type is-a goal-state)}}

Schema 33: The Must-satisty Relation

Activity goals such as the cost, the end-time (to be
plained in Section V-C), and the resources produce
an activity, are specified as bounds on these values (e
minimum and maximum admissible values). These g
act as constraints and are attached (in the form «
metaschema) to the affected slot. Thus, the cost goz
attached to the cost slot:

X~

SATHI et al.: REPRESENTATION OF ACTIVITY KNOWLEDGE FOR PROJECT MANAGEMENT 541

milestone-2

must-satisfy

cpu

cpu-
engineering
complete

engineering

Fig. 6. The activity goals.

{{activity
COsT:
Constrained-by: (type "is-a” “goal-constraint")}}

Schema 34: The Activity Schema with Cost goal

{{goal-constraint
IS-A: constraint
IMPORT ANCE:
VALUE:}}

Schema 35: The Goal Constraint

Section IV-D describes how these goals are used in con-
junction with schedules to monitor activities. The details
of constraint specification and usage can be found in [12].

D. Instantiation and Manifestation

The next step toward the construction of a theory of
activity, states, and goals is providing the representational
capability to differentiate between prototypical networks,
individualized networks, schedules and actual completion
reports. In our interviews with managers, we found that
they had the notion of a prototypical network which they
used repeatedly for similar design tasks. For each task,
they used the prototypical network possibly with some task
specific variations (e.g., everything but the power supply
design activities). A schedule was generated before start-
ing a task and updated at the end of each milestone (re-
ferred to as schedule of Jan. 15, schedule of June
30, ...). Finally, they create activity completion reports
providing the actual start and completion dates for the ac-
tivities. The project managers relate and enquire about
relative location of activities (e.g., what do I do after de-
sign), about a schedule {e.g., when does design start in
the new schedule), across schedules (e.g., how much will
the slip be now, compared to the last schedule), or com-
paring schedules with actual progress (e.g., how much did
we slip in completing design of CPU). Needless to say,
there is more than one representation of an activity and a
need for linking these diverse representations.

Organizations typically maintain standard procedures
{e.g., Engineering Guidelines) which describe the proce-
dure or the activities involved in a task. Even when stan-
dard procedures are not maintained formally, people have
rich sets of past experiences or scripts [36] stored as
prototypical activities and states. For a new task or proj-
ect, these standard procedures or past experiences are in-
dividuated and the new task becomes an instance of the
standard procedures. In effect, the set of activities which
comprise the new task is linked by an instance relation to
the corresponding activities and states in the standard pro-

cedures.'? For example, CPU-design %1 is generated as an
instance of CPU-design, enabled by start-CPU-design % 1
and causes CPU-design-complete %1 where start-CPU-de-
sign%l and CPU-design-complete %l are instances of
start-CPU-design and CPU-design-complete, respectively.
{{cpu-design%1 .
INSTANCE: cpu-design

ENABLED-8Y: start-cpu-design®1
cause: cpu-design-complete%1}}

Schema 36: The cpu-design%1 schema

Each activity in the individuated activity network is an
instance of a prototypical activity. In other words, the ac-
tivities are defined elsewhere, and through the process of
individuation, the project manager combines these activ-
ities to provide the desired result. In real life, the individ-
uation process could be a lot more complex and may in-
volve revisions of prototypical concepts. Hence, there
should be a prototypical activity, CPU-specification, which
can be instantiated to form CPU-Specification% 1, repre-
senting the specification development for Micro-84 CPU
version I. The project planner may revise the definitions
as given in the prototypical activity, CPU-specification at
the time of instantiating the activity.

Manifestations [12] are state specific descriptions of
the individuals which describe the state at a specific time.
For example, the chronicling subsystem of Callisto takes
the individuated network and creates manifestations,
which represent how and when the activities and states
actually progress. For example, the manifestation for CPU-
design%1-1 will now be linked to the activity CPU-de-
sign%1 and will provide the progress status and corre-
sponding start and end times.

{{m-cpu-design%1-1
Creation-Date: Jun 30 1983
MANIFESTATION-OF: CPU-design%1
MANIFESTATION-TYPE: scheduled
STATUS! active
DURATION: {{INSTANCE: time-interval

START-TIME: Jan 14 1984
END-TIME: Jan 21 1984311 1}

Schema 37: The manifestation of cpu-design%1

The duration slot points toward a time interval schema
(to be described in V-A). There may be more than one
manifestation of an activity. The manifestations are dif-
ferentiated on the basis of creation-date and manifesta-
tion-type. All the scheduled manifestations are marked
scheduled, while the real activity executions are marked
manifestation-type real. Fig. 7 depicts these networks,
where CPU-spec%1, CPU-design%1, and CPU-verifi-
cation%]1 are the instances for the corresponding proto-
typical activities, CPU-specification, CPU-design, and
CPU-verification.

Finally, let us look at the role of goals in relation to
schedules and real manifestations. We view goals as a set
of commitments, which change gradually with the execu-
tion of the project. There are always slips or surprises in
the execution of activities, which make it difficult to pre-
dict the exact time and cost for an activity. As a result, it

“Thus, as in [5], instantiation is the process of linking a real thing in
the world to a concept.

542

enable
start-cpu-

design

cause N
cpu-design-
complete

instpnce

enable cause

start-cpu-

cpu-design-
design¥%1

complete%l

design¥1

manifestation-~of

manifestatign<of

manifejtation-of

m-cpu-~ m-cpu-

m-cpu-~

design%l-1 designi1-2

design#%1-3

Fig. 7. Activity hierarchy and individuation.

i not uncommon to find the scheduled and real manifes-
tations differing in values. Just from these manifestations,
it is difficult to ascertain how bad a slip has been in terms
of the overall goal (because the future is still unknown).
The goals provide a more steady comparison point. By
disaggregating the goal into subgoals or milestones, test
points are created at which the status of the project can be
evaluated. At each milestone, the project manager makes
a decision whether to reschedule (and thus change future
milestones) or not. The scheduled manifestations, on the
other hand, can be changed dynamically, within a mile-

stone, to accommodate day-to-day discrepancies in sched-
uled versus actual.

V. THEORY OF CAUSALITY AND TIME

Definitions of activities, states, and their abstractions
only solve some of the representational problems. A man-
ager would like to know which conditions need to be met
before an activity starts. For example, we may assert that
CPU-design starts when CPU-specification is completed
and if a CAD machine is available Jor the duration of the
activity. What does such an assertion mean? Does CPU-
design start as soon as CPU-specification is completed?
Obviously not, as we still need to check for the possession
of the CAD machine. Is it sufficient, if the CAD machine
is available at the time of startirig the design and not later?
Probably not, because the CAD machine is needed for the
duration of the activity (or the activity can be suspended).
We seem to understand such assertions in terms of their
temporal and causal implications. It is the purpose of this
section to explicitly represent this understanding of the
temporal and causal implications.

Rieger and Grinberg have combined causality with tem-
poral relations to develop a classification of cause—effect
links [30]. While the resulting representation is explicit,
it unnecessarily defines each cross product of causal and
temporal relations (one-shot causal, one-shot enablement,
continuous causal, continuous enablement, etc.). The
number of such cross products increases rapidly as we be-
gin to aggregate activities and states using logical aggre-

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-7, NO. 5, SEPTEM

-gations. Also, it is not natural for us to think in te
such cross products. It is a lot easier to segregate the
and temporal relations and allow the model tc
bine any pair of them. Allen [2] has used this ar
although he has not integrated time and causality v
gregation across levels of detail. We have segregat«
and causality :and have attempted to relate causal
time with aggregation.

We will first define the temporal links associate
the activity networks described earlier in Section
We will also discuss the issues related to granule
measurement of time. We will then define the cau
lations which connect these concepts and show ho
are abstracted to higher levels. Finally, we will ¢
issues related to separation between causality and 1|

A. Theory of Time

“The CPU-design activity is started if the C
specification is completed. The CPU-specificati
should lead to a specification statement, whic
used by the design engineers for the design, ot
wise one of the specification team members need
accompany the design team in the design actvit

While such statements are often made by projec
agers, their usage or query in a model such as ot
quires an understanding of the underlying tempora
tions. The completion of specification statement a
possession of specification engineer appear to be alt.
equivalent states leading to the start of the design ac
While the former is a condition which needs to be *
at the start of the design activity, the latter is a poss
which needs to be “true” for the duration of the ac
Our model of the activity should reflect the unde
temporal differences in order to relate to project qu
or to provide for a knowledgeable analysis of the al
tives. For example, it should be possible to decide th
CPU-design activity was late because the specific
were not fully generated before starting CPU-desig.
specification engineers could not be accessed for
time due to their other commitments.

In the modeling of activities, temporal relations pr
a weak order of activities (a correlation in time as op]
to causality from one activity to another). For exa
the activity CPU-specification occurs during the exec
of CPU-engineering-network, and CAD machine is
possessed for the duration of the CPU-design
ity. There are three salient issues in the representati
temporal information. First, there are differenes in
resentation of relative and absolute time across prot
ical networks and their manifestations. Second, the
poral information should be abstracted across the lev.
activity abstraction. Last, we would like to discus
issues related to measurement and comparison of tir
varying granularity.

Representation of time has been a well debated
(101, [71, [18], [14], [26], [1], [38], [19], and lay.
foundation for our work here. We will be utilizing

ns

de
ed
le,
on
be
iv-

of
2p-
/p-
m-
.of
the

in

pic

the

the

SATHLI et al.: REPRESENTATION OF ACTIVITY KNOWLEDGE FOR PROJECT MANAGEMENT 543

e B e e
t1 before t2 t1 meets t2
2 after t1 12 met-by t1
t1
t2 > <12 >
<~~\1§
[L

11 overlaps 12 t1 contains 12

12 overlapped-by t1

t2 during t1
< 1 > t1
E~ 2 72' [<——42—9]

t1 same-begin t2 tt same-end t2

D
e
t1 time-equal t2

Fig. 8. The temporal relations.

temporal relations developed in [1], [38], and [19], which
provide an excellent classification of temporal relation-
ships, pictorially depicted in Fig. 8.

Each of these relations is represented as a schema with
an appropriate function to resolve whether concepts follow
a time relation or not {38].

{{before
i1S-A: temporal-relation
DOMAIN: {or (type is-a activity)
(type is-a state))

RANGE: (schema (or (type is-a activity)

(type is-a state)))
COMPARE-FUNCTION: compare-before-fn
INVERSE: after}}

Schema 38: The Before Schema

At least two concepts of time were found to occur in the
representation of activities. In prototypical activity net-
works, the representation of time between state and activ-
ity within a cluster and between clusters was relational
(e.g., CPU-design is done after completing CPU-specifi-
cation). On the other hand, the temporal definitions for
the manifestations of these activities are absolute (having
absolute start and end times, e.g., CPU-design starts on
Feb. 15). While the relative temporal relationships are re-
quired for the former, the latter needs a time line [38] (as
illustrated below) and some way of specifying time gran-
ularity.

The first step toward the representation of time is to
specify the units of time, a scale, and the functions to
manipulate time. This is defined by the time-line schema
[38]. An example of time-line is the weekly-time-line.

{{weekly-time-line
INSTANCE: time-line
POINT-FORM:
(fist (sexp (lambda (x) (not (lessp x 0)}))
(sexp (lambda (x) (not (lessp x 0))
(not (greaterp (x 52))})))
START-POINT: (1970 0)
END-PQINT: (1999 52)
GRANULARITY:(0 1)
ADD: week-add
DIFF: week-diff}}

Schema 39: lllustration of Time-line

~Atime interval is defined by a schema as having a start

ime, an end time, and a duration. It is dated-by a time
line. An illustration of the time-interval is m-CPU-de-
Sign%1-1 duration:

{{m-cpu-design%1-1-duration
START-TIME: (1984 2)
END-TIME: (1984 3)

DURATION: (O 1)
DATED-BY: weekly-time-line}}

Schema 40: An lllustration of Time Interval

The slot point-form describes how a particular time
point is represented. For example, in the weekly time-line
schema, time is represented as a pair of year and week.
The year values are restricted to positive numbers while
weeks have lower bound of 0 and upper bound of 52. The
start-point indicates the starting point of the time line
(e.g., beginning of 1970), while end-point indicates the
ending point of the time line (e.g., end of the year 1999).
The granularity slot provides an indication of the preci-
sion of the time line. For example, in the weekly time-line,
time durations of less than one week are ignored. The slots
add and diff store the procedures to be used for adding
time periods and deleting one time period from another,
respectively.

1) Temporal Relations in State-Tree: First, let us de-
scribe the relational model of time in the state tree. Each
relation used in the definition of the state tree has asso-
ciated with it a temporal relation. These temporal asso-
ciations differentiate between the one-shot precedence re-
lations and the continuous possess relations. We will
examine each of these relations specified earlier and pos-
tulate the corresponding temporal definitions.

We postulated two types of leaf states, the status pred-
icates which model the existence of a condition, and pos-
sess predicates which model the possession of a resource.
Their temporal descriptions are different. Let us define
start-time of a state as the time in the time line at which
the state becomes “true,” and end-time as the time at
which it becomes ““false.” The status-predicates are one-
shot [30], i.e., their start time is well defined while the
end time is not (only when due to a loop in the activity
execution, an activity is repeatedly executed, the end time
may have a meaningful interpretation). For example, the
CPU-design-complete becomes “true’ when the CPU-de-
sign is completed, and remains “true’ unless the design
is redone. On the other hand, the possess-predicates are
continuous [30], i.e., both the start and the end time for
the state are well defined and mark the period in time for
which the state is continually “true.” For example, the
CAD machine should be possessed for the duration of the
CPU-design activity. When a state is to be “true,” it must
be determined by the time relation explicitly linking the
state, and not by any implicit interpretation. This implies
that there should be a meet time relation explicitly linking
the activity CPU-design to the state CPU-design-complete.

An aggregate conjunct state, composed of status-pred-
icates, becomes “true’” when all of its substates become
true (see Iig. 9). The sub-state-of relation in such a sit-
uation is augmented with a meet relation in time, because
the aggregate state is “‘true” after its substates.'® Simi-
larly, a composite disjunct state carries an implicit same-

"*We will ignore the end-time consideration here as it is undefined.

544

sub-state-o

“Status

Pred 1

sub-state-of

Status
Pred 1

Status
“Pred 2

Time

T-True SPt - Status Pred 1
F - False SP2- Statys Pred 2

Fig. 9. Temporal aggregation of status.

begin relation, because the composite state is “true”
whenever any of its substates are “true” and the two time
periods have the same beginning.

An aggregate state, which has
disaggregates, is also continuous. A conjunct of possess
states is “true” for the duration of time, when all of its
disaggregates are “trye.” Unless some of them are needed
for only part of the activity duration, they have an asso-
ciated same-end relation. The disjuncts, on the other
hand, have a time-equal relation between the aggregate
and disaggregate state (see Fig. 10).

What happens now if we have an aggregate state, which
is composed of both status and possess predicates? This
aggregate state will have appropriate temporal relations
as described above with each of the substates and will be
“true” according to the complex logic created by its dis-
aggregates. For example, if the CPU-design activity can
be stated after the specifications are listed in a report or
if a member of the specification team can be possessed for
the duration of the design activity, then the disjunct state
is same-begin with the status predicate (i.e., completion
of specification report) and time-equal with the possess
predicate (i.e., possession of a person to explain specifi-
cations) and the disjunct state is, then, needed to be true
for the duration of the CPU-design activity (see Fig. 11).

There are many such alternatives and there may be any
composite states in g hierarchy of state
tree. It is not feasible to define 5 complex relation for each
one of these which combines a temporal characteristic with
an aggregation characteristic. It iIs much easier to have
aggregation and temporal relations coexisting in a model
of the activity, so that any of these combinations can be

Possess-predicates as

ration of their aggregate activity. For example, CPU-spec-
ification is done during the execution of the CPU-engi-
neering-network. Hence, if the start or end time for

- PAMI-7, NO. 5, SEF

Time
T True PP1. Possess P

F.Fase PP2 - Passess P

Fig. 10. Temporal aggregation of possession.

AND N —
AND 7
b-state-of
sub-state-o
SPt |7 —
P T
Status Bgs’sés?} PP2 TF I ,,,_,,,1
Pred 1 ELQQ&J

OR

SP1

PP2

Time

T-True SP1. Status Pred 1

F.False PP2. Possess Pred 2

Fig. 11. Complex temporal aggregation.

specification are not given, a rough estimate can
herited from the higher level activity. The definitior
relation sub-activity-of can now be extended as fol

{{sub-activily-ot
1S-A: part-of during}}

Schema 41: The sub-activity- of relation

As opposed to the state hierarchy, the relationship

tivity aggregation is consistently a temporal during
tion, irrespective of the type of aggregation (conju;
disjunct). The network in turn is an elaboration of :
tivity at a more abstract level and has a time-equal
tion with the abstract activity.

3} Time Granularity: Schedule predictions and :
completions, on the other hand, specify absolute
Consequently, the manifestations carry explicit infc
tion on start and end time for the manifestation. Fe
ample, the schedule for specification could Specify a
time of Jan. 15 and an end time of Feb. 0.

Granularity of time was defined earlier in this se
as the precision of the associated time line. The gran
ity of measurement needs to be defined both for
specification and the comparison of temporal info;
tion. The specification of start or end time of a man:
tation implicitly containg a time granularity. For exarr
the statement the CPU-design activity will pe compl,

185

he

1C~

or
1c-
la-

1al
1€.

3X-
art

on

he
1a-
8-
e,
red

SATHI et al.: REPRESENTATION OF ACTIVITY KNOWLEDGE FOR PROJECT MANAGEMENT

in March uses the granularity of month (this definition of
time is at a more aggregate level compared to the weekly
time line we saw earlier). Similarly, the determination of
whether two overlapping manifested activities occurred
before, after, or during one another is dependent upon the
comparison granularity. For example, if the activities CPU-
specification and CPU-design are both done in the same
quarter, they are time-equal at the granularity of a quarter,
while they may meet at the granularity of a day, and may
be related with an after relation at the granularity of a
second.

As explained before, the concept of time line is useful
in specifying the granularity, and hence two time intervals
in absolute time can be compared using two different
functions in different granularities. The compare function
given in each temporal relation uses the granularity of the
time line to adapt to the appropriate time granularity.

While being compared, the two time periods (or time
points) may be specified in the same or different granu-
larities. It is relatively easy to compare two time periods
having the same granularity (e.g., the first week of March
is before the first week of April) by using the compare
function stored in the temporal relations.* Consider a sit-
uation where the two time intervals are specified in two
different time granularities (e.g., 1984 first quarter and
Feb.-Apr. 1984). One may wish to transform one time
interval from one level of granularity to another before
comparing and deducing the relationship (e.g., that 1984
first quarter is equivalent to Jan.—Mar. and hence overlaps
with Feb.-Apr.). The question is whether such a transfor-
mation should be done on the less precise or the more
precise time interval. The transformation from a more
precise to a less precise time line involves an approxima-
tion, and hence, it is better to transform the time interval
in quarters to the one in months and, then, apply the com-
pare function. Time points need to be converted into time
intervals before such a comparison can take place. Thus,
1984 first quarter as a time point cannot be compared to
Mar. 19, until we convert it into a time period (i.e.,
Jan.1-Mar. 31 1984) and then, it can be deduced that 1984
first quarter contains Mar. 19, 1984.

B. Theory of Causality

In the project management domain, causation of one
activity by another is central to the planning, scheduling,
and chronicling of activities. We will describe here the
Causal primitives necessary for such a system. These
Causal primitives should facilitate the reasoning of caus-
ation across the activities and states. For example, some-
one may want to know: Which activity is caused by CPU-
Specification? Which are the previous activities of CPU-
design? or If CPU-engineering is initiated, which subac-
fivities are started as a result? The scheduling and chron-
lcling systems are likely to use this causal reasoning to

14, . .
To do such a comparison, the compare function accesses the granular-

ity and point form of the two intervals and makes an arithmetic comparison
of the two tuples.

545

move through the activity network for generating a sched-
ule or for deciphering whom to report the progress, re-
spectively.

A number of models has been developed for tracking the
progression of change or “truth” in a set of stages
(e.g., Petri nets [28] and ICN [8]). Unfortunately, these
models work on ““flat’” networks, i.e., having no aggre-
gation or abstraction levels. We introduced aggregation
and abstraction at three levels: in a state tree to describe
the composite state enabling or caused by an activity, in
an activity network to describe activities at different levels
of detail or aggregation, and last, abstraction of states
across activity hierarchy. To answer the queries raised in
the previous paragraph, one needs to know the causal im-
plications for each of these three situations. For example,
it is equally correct to say that the start of CPU-specifi-
cation causes the start of CPU-engineering as it is to as-
sume the causality top-down from CPU-engineering to
CPU-specification (see Fig. 12). In the project manage-
ment environment, it is simply a matter of reporting ver-
sus directing, and thus, both causality directions are
equally plausible.

Causality is stronger than temporal association. In the
definitions of temporal relations, meets only specified the
correlative occurrence of the two time intervals without
any causation. Causation specifies an order of occurrences
and has associated with it the temporal relations. In other
words, temporal relations can exist without causation,
while causal relations imply temporal association. Each
aggregation node in the activity/state network has, asso-
ciated with it, a two-way causation which needs to be used
for evaluating whether a state is “true”” or not. For ex-
ample, if a conjunct node is “true,” so are its substates.
Similarly, if the substates of a conjunct state are “true,”’
so is the conjunct state.

The three basic relations linking states to other states
and activities: enable, cause, and has-sub-state, need to
be formally defined to include the causality of status prop-
agation from one state or activity to another.

Enable/Enabled-by: As when a state is linked to an ac-
tivity with the enable relation, it introduces a new prop-
agation-action function, so that whenever the (domain)
state is true, -it starts the (range) activity. For example,
CPU-design is started when start-CPU-design is “true.”

{{enable
1S-A: relation
INVERSE: enabled-by
DOMAIN: {type is-a state)
RANGE: (type is-a activity)
INTRODUCTION: enable-propagation-action}}

{{enable-propagation-action
INSTANCE: introduction-spec

NEW-SLOT: propagation-action
NEW-VALUE: start-activity-fn}}

Schema 42: The Enable relation

In the above description, the enable-propagation-action
Is introduced when the enable link is formed between the
activity and its enabling state.'> The star-activity-fu is a

"*For details of introduction specs, please refer to [11] and [44].

546 IEEE TRANSACTIONS ON PATTERN

status
predicate
Causality
is-aJstart-cpu top-down bottom-up

engineering

tion-of

elabor

start-cpu-
engineering
network

sub-stpte-of

status
predicate

start-cpu-

specifi-~.
P cation

Fig. 12. Causality and abstraction.

Lisp function which is attached to the enabling state (e.g.,
start-CPU-design). Whenever a propagation action mes-
sage 1s sent to the enabling state (2 la object program-
ming), it generates a manifestation of the activity and re-
cords the activity status as active.

Cause/Caused-by: The cause relation is similar to the
enable relation, except that causation flows from the activ-
1ty to a state. Whenever the activity changes its status, the
change is propagated to the caused state. For example, the
completion of design-CPU makes design-complete “‘true”
(by sending a message to activate the update-status-fn in
the propagation-action slot of the activity.

{{cause
IS-A: relation
INVERSE: caused-by
DOMAIN (type is-a activity)
RANGE: {type is-a state)

INTRODUCTION: cause-status-action}}

{{cause-status-action
INSTANCE: introduction-spec
NEW-SLOT: propagation-action
NEW-VALUE: update-status-in}}

Schema 43: The Cause relation

Has-sub-state/Sub-state-of: The aggregation of states
implies a two-way causality. Any changes in the status
should lead to status changes in the other states in the
hierarchy depending on the logical aggregation type used
in the aggregation hierarchy. For example, the or-state in
the design-CPU example should change its status when-
ever either of its disaggregate states changes in the status.
The propagation-action slot is dependent on the type of
aggregation and is defined for the or-state and the and-
state schemata.'®

{{or-state

1S-A: aggregate-state
PROPAGATION-ACTION: or-propagate}}

Schema 44: The Or-state Schema

{{and-state
1S-A: aggregate-state
PROPAGATION-ACTION: and-propagale}}

Schema 45: The And-state Schema

The or-propagate function simply applies a Lisp “or” function to the
evaluation of status by its substates, obtained by sending object program-
ming messages. The and-propagate applies a Lisp *‘and”’ instead.

ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-7, NO. 5, SEPTE}

Finally, the truth propagation for the leaf-state
to be defined. A status predicate is true if it is ¢
manifested (i.e., it has a manifestation which is
and thus, has a start time but no end time), or if
orations are true. A possess-predicate is true if i
rently manifested, otherwise, a message is sent t¢
source manager for the required resource reque
possession of the resource.

{{status-predicate
1s-A: leaf-state
PROPAGATION-ACTION: update-status-predicate-fn}}

Schema 46: The Status Predicate Schem

{{possess-predicate
1S-A: leaf-state
PROPAGATION-ACTION: request-resource-manager-fn}}

Schema 47: The Possess Predicate Schema

Truth Propagation: Are the above causal definitic
ficient to define causation in activity networks? W
to look at the propagation of causation from one :
to another to analyze whether the definitions giver
lead to a nonambiguous description of the causal fl
will assume that each time the system simulates the
ity network to generate a schedule, the following se
of steps will be executed.

1) The user initiates the activation'’ of the CP:i
neering activity which involves sending a message
state start-CPU-engineering to propagation-actio
asserting that the state start-CPU-engineering is tru
Fig. 13).

2) As the state start-CPU-engineering is a statu
lcate, its propagation-action function update-
predicate-fn sends a message to its elaboration, star
engineering-network, and creates a manifestation o
CPU-engineering if the message returns a true.

3) The state start-CPU-engineering-network is
state. The propagation-action function of an or-sta
ates a manifestation of the or-state, if any of the me
sent to its substates returns a true. A message is t
sent to the states, start-CPU-specification and stari
design, for propagation-action.

4) The state start-CPU-specification is a status-
cate without any elaborations and hence can be
true. As a result, start-CPU-engineering-networ
start-CPU-engineering are also made true. The E
gation-action slot of start-CPU-specification has a
tion which involves sending a message to the CPU-

fication activity to start.'®

5) The completion of the CPU-specification in
searching for a state in the caused state tree whose
matches with the status of the activity, and sending ¢
sage to that state to propagation-action. In this cas
propagation-action message is sent to the state,
spec-complete. As the state CPU-spec-complete is

""The activation of an activity implies asserting that the activity :
for execution. An activity can be activated either by the user, or
the causation from one activity to another, as illustrated later.

18Starting an activity involves a number of actions: setting the s
active, making a manifestation of the activity, and scheduling the
completion at the scheduled end time of the activity (which is start
the duration of the activity).

ady
ugh

sto
vity
a2+

SATHI ez al.: REPRESENTATION OF ACTIVITY KNOWLEDGE FOR PROJECT MANAGEMENT

/CDN

engineering

start-cpu-
engineering

start-cpu-
engineering-

true
true?

start-cpu- cpu
speci-
fication

cpu-spec-
specifi- complete

: cduse
cation

start

Fig. 13. The propagation of causality 1.

true? cpu-
start-cpu-
design

true?s- rue?
true

design

or-cpu-

possess-CAD
design machine
true?
request
true
cpu-spec- cpu-verifi.
complete failed
CAD-
resource-
manager

Fig. 14. The propagation of causality II.

tus-predicate with no further elaborations, a manifesta-
tion is created.

6) Now, we face a problem. In order to propagate fur-
ther, we now have to move up in the enabling state tree
from CPU-spec-complete to Start—CPU-design (see Fig.
14). There are two ways of achieving it.

* A propagation action can be defined for moving up
the state tree along the sub-state-of relation. But, as we
have already defined a propagation action for moving down
the has-sub-state relation, the states CPU-spec-complete
and or-CPU-design will end up sending messages to each
other ad infinitum. ,

* We can find the next activities of CPU-specification
linked through CPU-spec-complete, activate each one of
them, and follow the same logic as we did for CPU-spec-
ification and CPU-engineering activities. Following the
second approach, we somehow find (to be explained, in
fifllail, later in this section) that the activity, CPU-design,
1S to be activated. A message is sent to the state start
CPU—design to initiate a propagation-action.

7y As start-CPU-design is an and-state, it cannot be
true unless all of its substates are true. A message is sent

to or-CPU-design and possess-CAD-machine to initiate
Propagation-action.

547

8) The or-CPU-design sends a message in turn to CPU-
spec-complete and CPU-verification-failed, receives that
CPU-spec-complete is true and, thus, responds in turn to
start-CPU-design with a true message.

9) The state possess-CAD-machine is a possess-pred-
icate. In order for it to be true, it needs to possess the
CAD-machine. A message is thereby sent to the resource
manager of the CAD-machine requesting the use of the
CAD machine for the duration of CPU-design and a false
is sent back to start-CPU-design.

10) When the resource manager for CAD machine de-
cides to allow the possession of the CAD machine for the
CPU-design, a possession message'? is sent to the CPU-
design and the process of propagation action is repeated
for the state start-CPU-design.

The truth-propagation algorithm described above
leaves one question unanswered—how are we going to find
out that the activity, CPU-design should be activated when
the activity, CPU-specification is completed? This ques-
tion turns out to be nontrivial. Let us explore it further by
defining the transitivity of a relation which moves across
the state trees from one activity to its next activities.

1) The first step in such a relation is to move along a
cause relation from an activity to the top of its cause-
state-tree. Thus, from CPU-specification, we move to
CPU-spec-complete.

2) The next step could be that of moving down a has-
sub-state relation (e.g., from CPU-verification-complete
to CPU-verification-failed, or moving up a sub-state-of
relation (e.g., from CPU-spec-complete to or-CPU-de-
sign). As it turns out, there may be any number of such
sub-state-of or has-sub-state relations.

3) Finally, one has to move from a state to an activity
by moving along an enable relation (e.g., from start-CPU-
design to CPU-design).

The problem comes from the fact that we had to move
both up and down the state trees. There is no consistent
way of ensuring that we stop at only the next activities of
the activity that we started with. Let us consider the sit-
uation in Fig. 15. We would like to model a network where
activity al has two alternative outcomes: s121 and s122.
Another activity a2 has a single outcome s22. Activity a3
starts when al causes 5122 or a2 causes its completion,
s22. Also, activity a4 starts after a2 results in §22. There
is nothing to inform the “transitivity” algorithm, which
attempts to move from s12 to s122, that after having
moved to s31, it should not move to s22. This portrayal of
state trees does not have an associated concept of caus-
ality, which would have differentiated between movement
from 5122 to s31 and from s31 to s22.

Let us diagnose the problem a little more closely. Each
status predicate in our network stands for two descrip-
tions. First, that a condition is met due to the ending of
an activity (e.g., failure of verification at the end of the
verification activity). Second, that this condition is one of

Similar to the activation message, a possession message informs the
activity that the needed resource is available and that the activity can be
started.

548

IEEE TRANSACTIONS ON

Legend

Q activity

-

state

Fig. 15. Causation: problems in transitivity.

Legend

O activity

]

state

Fig. 16. Causation: state space approach.

the states required for starting a new activity (e.g., start-
ing design due to failure of verification). It is tempting to
use one state to signify both of the above, as it is done in
the state space approach [28], [8]. While modeling simple
activity networks, these two states naturally collapsed to-
gether without adding any ambiguity to the definition of
next-activities. In Fig. 16, the flow of causality moves from
activity al to state 512, from activity a2 to state s22, then
from these two states to their conjunct 531, and finally,
from state s31 to activity a3. Here, the same state s12
signified the completion of activity al and a condition for
starting activity a3. We should be able to model this net-
work with 531 as a conjunct state made of two leaf states
512 and 522.

Aggregation among activities and states introduces am-
biguity. As'we saw in Fig. 15, the state space approach is
clearly inadequate for dealing with arbitrarily complex ac-
tivity and state combinations. 7

One way of dealing with the problem of transitivity of
causality and “truth propagation” is to define two causal
links for each substate/subactivity relation. Each state in
such a network would be a part of a causal chain at a level
of abstraction, and there would be additional links to re-
late to higher levels of abstraction. Fig. 17 shows an il-
lustration of this approach. Although this approach is ex-
plicit, it ignores the implications from the semantics of

PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-7, NO. 5, SEPTEME

i “Aggregate
State
- sub-state-cause
- sub-state-of-cause

3
2

} 3 - sub-state-caused-by
4

eaf
State

Fig. 17. Causation: multiple link alternative.

- sub-state-of-caused-by

cpy cause

cpu-spec

specification

(méet) __enable

let /
ffffljili, {timesequal)

. cpu

design = \ desi

SR) N

suztzt te-of

(ﬁJ{&ﬂ?V)
caus:zég;;1e (time-equal)
(meetf) sub-state”of posses

\ tipe“equal) sub>state-of CAD-mach
\@ start-cpu-
design-cil

design-c2
causg-enable
cpusverifi-
cation-
complete

(meet)
has-syb-state
{timd<equal)

start-cpu-

cause
verification

(meet)

Legend

O
-

has-suh~State activi

cpu-verifi-
cation-
succeeded

cpu-verifi-
tation-
failed

state

Fig. 18. Activity clusters illustration.

aggregation and abstraction relations and increases
necessarily) the number of causal relations.

We see a need for separation of causality from a,
gation. This involves the modeling of causality separ
across the activity clusters (see Fig. 18) (defined e
in Section IV-A) and using the state trees for ascerta
causality within an activity cluster. It looks reasonal
follow this approach because activity cluster is an aj
gate concept capable of reasoning within itself to prc
the direction of causality. We use the relation caus
able to link the caused state associated with one ac
to the corresponding enabling state of its next act
Hence, CPU-spec-completion, the caused state assoc
with specification, has a cause-enable link to stari-
design cl. Within the activity cluster for CPU-desigr
transitivity algorithm can move along the state agg
tion from the leaf states to the top of the tree. The
tration in Fig. 15 now changes to Fig. 19.

This approach involves the definition of the state s
as a mirror image of s122, which is true wheneve
latter is true. An added benefit of the inclusion of act
clusters is that they reduce the complexity of activity
iting. Activities are modular, and hence are easier to i
and modify without worrying about interactions with «
states.

The cause-enable relation was introduced to sep:
clusters. The link is not only used to separate but al:
propagate state changes. For example, when CPU-v.
cation fails, the cause-enable relation, which conr
CPU-verification activity cluster to CPRU-design, pr
gates a change in status and, thus, initiates the sta

1985

(un-

gre-
tely
rlier
1ng
e to
gre-
vide
-en-
ivity
vity.
ated
~PU-
, the
‘ega-
Hus-

122°
r the
ity
7 ed-
nsert
sther

arate

so to
erifi-
nects
‘opa-
it of

SATHI et al.: REPRESENTATION OF ACTIVITY KNOWLEDGE FOR PROJECT MANAGEMENT

activity

(.

state

Fig. 19. Causation: aggregations and cause-enable.

CPU-design. The enabling state tree for CPU-design rep-
resents the other requirements for starting specification,
i.e., having the CAD machine. Once the CAD machine
is available, it fulfills the condition for starting CPU-de-
sign and propagates the causation to the CPU-design ac-
tivity itself by forming a manifestation of the CPU-design
with an appropriate start time.
Cause-enable/Enable-cause: The cause-enable rela-
tion allows propagation of status from one state to an-
other. Whenever the domain state changes its status, the
range state should also change its status accordingly.
{{cause-enable
1S-A: relation
INVERSE: enable-cause
DOMAIN (type is-a state)
RANGE: (type is-a state)
INTRODUCTION: cause-enable-propagation-action}}
{{cause-enable-propagation-action
INSTANCE: introduction-spec

NEW-SLOT: propagation-action
NEW-VALUE: create-manifestation-fn}}

Schema 48: The Cause-enable relation

C. Time, Causality, and Goals

Having defined time and causality, let us look at their
association. We have found that causality is a stronger as-
sociation of the two because it implies the temporal as-
sociation as well as the direction of causation. At the same
time, there are a number of combinations generated from
the association of time, causality, and aggregation and we
do not have a small set of combinations which could be
labeled and used together. We would like to raise here two
issues related to time, causality, and aggregation. First,
how are the temporal and the causal links related? Sec-
ond, what is the role of goals and milestones?

We have employed many of the causal relations given in
(301, but have described time separately. This separation
enables activities to be causally linked with a temporal
relation ascribed separately. In general, there is no need
to assign a specific temporal link as the process of caus-
ation (i.e., the “truth” propagation) will generate a tem-
p.oral association in absolute time and a similar system can
simulate the causal reasoning to derive the relative tem-
poral associations. For example, if no temporal associa-

549

tions are provided, the system can reason through the net-
work to assume that specification is completed before
starting design. The temporal relations at the same time
provide additional information not available in the causa-
tion (e.g., specification can overlap with design).

The goal-states defined earlier imply a need for causa-
tion from an initial state to a goal state. The question is:
what do these goals imply in terms of time and causality?
In particular, the must-satisfy relation projects what
should happen. What does this must-satisfy relation im-
ply in terms of causality, and how should the ““truth-prop-
agation” deal with the must-satisfy relation, and finally,
which of the time relations should be associated with the
must-satisfy relation?

The status of goals is different from “‘true” and
“false.”” A goal is either inactive, active, or satisfied.
When the goal is generated, it is inactive as no activity is
actively pursuing the achievement of the conditions spec-
ified in the goal. The enablement of the attached activity
leads to a change in the goal state from inactive to active.
The active status of the goal implies that an activity is
being pursued to meet the goal. If the completion of the
activity meets the conditions specified in the goal, it sat-
isfies the goal. The goal state is manifested for each of the
three above mentioned states by the respective actions,
viz., enablement of the enabling state tree and causation
of the caused state tree. The manifestations carry a status
value and a time interval during which the goal was in the
specified status. Thus, the goal for version 1 of CPU-en-
gineering %1 is set to active as and when the start-CPU-
engineering %1 activity is manifested. The goal is satis-
fied when the CPU-engineering%1 is completed (see Fig.
20).

VI. THEORY OF RELATIONAL ABSTRACTION

When we walked into the application environ-
ment, the first couple of sessions were spent in un-
derstanding the meaning of words used. Terms like
ECO, revisions, components, etc., had specific
meanings associated. Once we generated the seman-
tic representation, we had to generate abstract rela-
tions to conform to the managers’ vocabulary.

It is interesting to note that while the jargon seemed
obtrusive to people outside the organization, it was used
freely within the organization, with no ambiguities. When
we examined the meaning, we could theorize and repre-
sent the underlying semantics. Organizations develop their
own languages and everyone communicates in these lan-
guages, despite the fact that the language used will not be
understood by outsiders. In this section, we will discuss
the rationale behind these domain languages and the re-
laated issues of representational complexity and dis-
tance. Unfortunately, the underlying semantic represen-
tation is usually available in the minds to the system
designers alone. In our representation, it is possible to
overlay the domain structure over the semantic structure
and change the domain layer from organization to orga-
nization or from one application to another.

550

l

must-satisfy

cpu

cpu-
engineering
complete %1

milestone-2
active

musﬁ~satisfy

start- cpu-
engineering vy

engineering
%1

Legend

' current

manifestation

closed
manifestation

start- cpu-
engineering 11|

cpu cpu-

engineering
complete %1

Another reason for overlaying abstract relations is the
complexity of the representation. While the explicit rep-
resentation of time, causality, etc., is theoretically satis-
fying, in practice it places a heavy burden on the creator
of the model. It is obvious to the model builder how ac-
tivity clusters are formed and traversed, but in applying
these concepts for perusing the database, the model builder
or the user would like to use more abstract relations. The
problem here is one of representational distance, that is,
how complex is the transformation of surface-level con-
cepts into the representation primitives. Frame systems
provide a partial solution similar to abstract data types; a
frame represents an aggregation of properties and struc-
ture. The SRL language used by Callisto also provides
relation abstraction. Hence, “higher level” relations may
be defined.

For example, let us develop a relation next-activity-of
which links two activities, causally linked to each other.
We would like to infer that CPU-design is the next-actiy-
ity-of CPU-specifiation. In the model developed in Section
IV, we described CPU-specification causes CPU-spec-
complete, which has a cause-enable link to start-CPU-de-
sign-cl, which in turn is the substate of or-CPU-design.
The state or-CPU-design is sub-state of start-CPU-design,
which enables the activity CPU—design. The relation next-
activity-of is an abstraction of this detailed description.
The relationship between the abstract relation and its
elaboration are provided by defining the transitivity of
next-activity-of in terms of the basic relations used at the
semantic level. The schema representation of next-activ-
ity-of is as follows:

engineering
%1

Fig. 20. The status of goal.

{{next-activity-of

1S-A: relation

INVERSE: has-next-activity

DOMAIN: (type is-a activity)

RANGE: (type is-a activity)

TRANSITIVITY:

{list
(slep enabled-by all 1)
(repeat (step has-sub-state all t) 0 inf)
{step enable-cause ali t)
(repeat (slep sub-state-of allt) 0 inf)
(step caused-by all 1))}}

Schema 49: The Relation next-activity-of

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-7, NO. 5, SEPTEMBE

The user could query whether the activity CPU-d
is next-activity-of CPU-specification, or could get
of activities, each of which are next-activity-of
specification .

Linguistic level [5] relations may be formed with
combination at the conceptual or epistemological le
Hence, if the project manager intends to specify sub
eration-of as a sub-activity-of for the manufacturing
main, he should be able to specify it by defining the .
operation-of relation as follows:

{{sub-operation-of
1S-A: sub-activity-of
DOMAIN: (type i3-a operation)
BANGE: (type is-a operation)
INVERSE: has-sub-operation
TRANSITIVITY: (step sub-activity-of all B3}

Schema 50: The Sub-operation-of Schema

To summarize, the purpose of relational abstractio
twofold. First, it provides a way of representing relat:
which are abstractions of detailed semantic represe
tion. This abstract representation reduces the sema
complexity that the model builder or the user has to «
with. Second, it helps translation of domain concept,
more general semantic concepts.

VII. CONCLUSION

We started with a goal of developing a representat
language which satisfies the criteria of completeness, |
cision, and lack of ambiguity. In the process of develop
the representation language, we integrated the theories
activity, time, causality, manifestation, and instantiati
The integration process raised a number of issues: fiy
the need for separation of time and causality; second,
difference between one-way causation (the cause-ena
relation) and two-way causation (the has-sub-state z
sub-state-of relations); and finally, the difference betwe
the aggregation process of building a whole from its par
from the abstraction process of reducing information fr«
one level of detail to another.

A formal evaluation of these theories is a paper in itse
We will concentrate here on the example listed in Secti
II, and evaluate the theories in terms of their complet
ness, precision, and lack of ambiguity.

Evaluation of Completeness: The criterion of co1
pleteness requires that the representation spans the app
cation domain. The project management tasks ne
models of the required activities; their duration; prec
dence, resources; time; logical (causal) connections; i
dividual and prototypical plans; constraints and orgar
zations for conflict resolution. This paper includes tl
definition of the activities, the states or conditions en
bling the activity, and those caused by the activity. It cor

1 the representation of this relation, we have specified the followi
transitivity grammar for the relation. In order to relate two activities usi
this relation, one has to traverse one enabled-by relation, any number
sub-state relations (which take us down the enabling state tree), one e
able-cause relation (which takes us to the caused state tree of the oth
activity), any number of sub-state-of relations to g0 up the caused sta
hierarchy, and finally a caused-by relation to reach the activity.

m 1s
ions
:nta-
intic
deal
[s to

owing
using
ber of
ne en-
other
| state

SATHI et al.: REPRESENTATION OF ACTIVITY KNOWLEDGE FOR PROJECT MANAGEMENT 55

ers the activity precedence and resource requirements, in-
dividual and prototypical plans, and alternative
manifestations, as well as the temporal and causal rela-
tions linking these activities and states. The concepts re-
lated to project environment, i.e., the oganization for con-
flict resolution, are described elsewhere [35]. The theory
of constraint can be found in [12]. At the same time, the
theory falls short in the description of activity attributes
(e.g., cost, duration, product, or state transformation de-
tails), the procedures for aggregation and abstraction of
activities and states (e.g., the operations needed for ag-
gregation-averaging, summation, etc., and the types of at-
tributes for each of these operations), and the use of clas-
sification relations for categorizing and generating group
characteristics.

Evaluation of Precision: Precision requires description
to be at the appropriate granularity of knowledge, i.e., the
precision used in the project management communication.
The theory is considered successful if the sentences in the
example can be translated into a set of concepts which
replicate the descriptions in the sentences. Using rela-
tional abstraction, a number of higher level statements can
be faithfully replicated (e.g., specification is followed by
design). At the same time, the theory is capable of de-
scribing the situation in a lot more detail (e.g., whar con-
ditions need to be met before the CPU-design activity? or
during the CPU-design activity?). Thus, a user can choose
the appropriate level of precision in describing plans,
schedules, or progress in a project.

Evaluation of Clarity: Clarity of the theories can be
evaluated by ensuring that there exists one and only one
representation for a given situation. These are two likely
sources of ambiguity: inconsistency and incompleteness
(of which completeness is covered above).

Inconsistency implies that there exist two or more proj-
ect descriptions which, when put together, give rise to a
conflict. For example, if managers use different PERT-
based networks for project descriptions at different levels
of the managerial hierarchy, the descriptions may suffer a
lack of common updating procedures. Similar problems
have been observed during plan generation and scheduling
of projects. We aimed at providing explicit details not only
to avoid incompleteness but also to achieve the integra-
tion of concepts so as to avoid inconsistency. For exam-
ple, the integration of CPU-engineering activity with CPU-
engineering-network ensures that the status information
remains consistent between the two levels of detail. The
specifications and changes made in planning, scheduling,
or chronicling are integrated at multiple levels in the man-
agerial and project hierarchy, not only across levels of
Management, but also within a level from one department
Orunit to another. In this way, the introduction of incon-
sistency is minimized and inconsistencies that do exist are
brought to the surface.

Research tends to raise as many questions as it answers.
Our work is no different. It raises issues in two directions.

* Whether the experimental system developed here can
be applied to “real-life” large engineering and manufac-

turing projects. A number of questions is often asked. For
example, how much detail is really needed? How easy will
it be to use? How bulky will it be? Would it be adequate
for all project management needs? While such large proj-
ects involve 5000 or more activities, no manager ever re-
views more than 100 activities at a time. The major short-
coming of the existing commercial packages is their
inability in summarizing or focusing on the 100 relevant
activities. While our research paves the way, the tech-
niques for presenting summaries and focuses are yet to
evolve.

* The activity representation is similar across the var-
ious application domains. While we developed a set of se-
mantic primitives, they need to be validated on a large
number of domains. It would be worthwhile to explore the
similarities and differences across domains, especially in
their inheritance considerations.

ACKNOWLEDGMENT

We would like to acknowledge the helpful comments
from L. C. Smith, W. Sears, G. Mangan, R. Glacke-
meyer, S. Smith, E. Screven, and P. Gage.

REFERENCES

[1] J. F. Allen, “Maintaining knowledge about temporal intervals,”
Commun. Assoc. Comput. Machine, vol. 26, pp- 832-843, Nov. 1983.

2] —, “General theory of action and time,”’ Artif. Intell., vol. 23, no.
2, July, 1984.

[3] D. Bobrow and T. Winograd, “‘KRL: Knowledge representation lan-
guage,” Cogn. Sci., vol. 1, no. 1, 1977.

{4] R. J. Brachman, “A structural paradigm for representing knowl-
edge,”” Ph.D. dissertation, Harvard Univ.. Cambridge, MA, May
1977.

[S] —, ““On the epistemological status of semantic networks,” in As-
sociative Networks: Representation and Use of Knowledge by Com-
puters, N. V. Findler, Ed. New York: Academic, 1979, pp. 3-50.

[6] —, “Whatis-a and isn’t: An analysis of taxonomic links in semantic
networks,” IEEE Trans. Comput., vol. C-32, pp. 30-36, Oct. 1983.

{71 B. C. Bruce, “A model for temporal references and its application in
a question answering program,” Artif. Intell., vol. 3, pp. 1-25, 1972.

[8] C. Ellis, “Information control nets: A mathematical model of office
information flow,” in Proc. ACM Conf. Simulation Meas. Model.
Compur. Sys., 1979.

[9] S. E. Fahlman, **A system for representing real world knowledge,”

Ph.D. dissertation, Mass. Inst. Technol., Cambridge, MA, 1977.

N. V. Findler and D. Chen, “On the problems of time, retrieval of

temporal relations, causality, and co-existence,™ in Proc. 2nd. Int.

Joint Conf. Artif. Intell., 1971, pp. 531-545.

M. S. Fox, ““On inheritance in knowledge representation,” in Proc.

6th Int. Joint Conf. Artif. Intell., Tokyo, Japan, 1979.

—, “Constraint directed search: A case study of job-shop schedul-

ing,” Ph.D. dissertation, Dep. Comput. Sci., Carnegie-Mellon Univ.,

Pittsburgh, PA, 1983.

1. Goldstein and B. Roberts, “NUDGE, a knowledge-based schedul-

ing system,” in Proc. 5th Int. Joint Conf. Ariif. Intell., 1977, pp. 257~

263.

P.J. Hayes, “The naive physics manifesto,” in Expert Systems in the

Micro Electronic Age, D. Michie, Ed. Scotland: Edinburgh Univer-

sity Press, 1979, pp. 243-270.

G. G. Hendrix, “Modeling simultaneous actions and continuous pro-

cesses,”” Artif. Intell., vol. 4, no. 3, pp- 145-180, 1973.

—, “Expanding the utility of semantic networks through partition-

ing,” presented at the 4th Int. Joint Conf. Artif. Intell., Tiblishi,

U.S.S.R., 1975.

—, “Encoding knowledge in partial networks,” in Associative Nei-

works, Representation and Use of Knowledge by Computers, N. V.

Findler, Ed. New York: Academic, 1979.

K. M. Kahn and A. G. Gory, “Mechanizing temporal knowledge,”

Aridf. Intell., vol. 9, no. 2, pp. 87-108, 1977.

[19] B. L. Kedzierski, “Knowledge-based communication and management

{10]

[(i1]
[12]

[13]

(14}

(15}

[16]

{171

[18]

552

(20}

[21]

[22)

[23]

[24}

[25)
[26]

(27)

(28]
[29]

[30]

31]

32]
[33]

[34]

[35]
[36]
[37)

[38]

(39]

[40]

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-7, NO. 5, SEPTEMBI

and support in a system development environment,” Ph.D. disserta-
tion, Dep. Comput. Sci., Univ. S. Western Louisiana, Lafayette, LA,
Nov. 1983. See also, Kestrel Inst., Palo Alto, CA, Tech. Rep.
KES.U.83.3

I E. Kelley and M. R. Walker, “Critical-path planning and schedul-
ing,” in Proc. Eastern Joint Comput. Conf., 1959,

R. M. Lee, “CANDID: A logical calculus for describing financial
contracts,” Ph.D. dissertation, Dep. Decision Sci., Wharton School,
Univ. Pennsylvania, Philadelphia, PA, 1980.

D. Lenet, “AM: An artificial intelligence approach to discovery in
mathematics as heuristic search,” Ph.D. dissertation, Dep. Comput.
Sci., Stanford Univ., Palo Alto, CA, 1976.

F. K. Levy, G. L. Thompson, and J. D. Wiest, “The ABC of the
critical path method,”” Harvard Business Rev., Oct. 1963,

D. G. Malcolm, J. H. Rosenbloom, and C. E. Clark, “Application of
a technique for research and development program evaluaton,” Oper.
Res., Sept.-Oct. 1959,

J. McCarthy, “Situations, actions and causal laws,” Stanford Univ.,
Palo Alto, CA, Tech. Rep. AIM-2, July 1963.

D. McDermott, “A temporal logic for reasoning about processes and
plans,” Cogn. Sci., vol. 6, pp- 101-10S, 1982.

J. R. Meehan, “Everything you always wanted to know about author-
ity structures but were unable to represent,”’ presented at the |st Nat.
Conf. Artif. Intell., 1980.

J. L. Peterson, ““Petri nets,” Comput. Surveys, vol. 9, no. 3, pp. 224-
252, Sept. 1977.

M. R. Quillian, ‘‘Semantic memory,”’
Mellon Univ., Pittsburgh, PA, 1966.
C. Rieger and M. Grinberg, “‘The declarative representation
cedural simulation of causality in physical mechanisms,” in Proc. 5th
Int. Joint Conf. Artif. Intell. 1977, pp. 250-255.

R. B. Roberts, and 1. P. Goldstein, “The FRL primer,” Artif. Intell.
Lab., Mass. Inst. Technol., Cambridge, MA., Tech. Rep. Memo 408,
1977.

E. D. Sacerdoti, “Planning in a hierarchy of abstract spaces,” in Proc.
3rd Int. Joint Conf. Artif. Intell., 1973, pp. 412-422.

——, ““Planning in a hierarchy of abstract spaces,” Arrif. Intell., vol.
5, no. 2, pp. 115-135, 1974.

A. Sathi, M. S. Fox, M. Greenberg, and T. Morton, ““Callisto: An
intelligent project management system—Overview,” Intell. Syst. Lab.,
Robot. Inst., Carnegie-Mellon Univ. , Pittsburgh, PA, 1985.

——, ““Modelling of project environment,” Intell. Syst. Lab., Robot.
Inst., Carnegie-Mellon Univ., Pittsburgh, PA, in preparation.

R. Schank and R. Abelson, Scrips, Plans, Goals and Understand-
ing. Hillsdale, NJ: Lawrence Erlbaum, 1977.

L. K. Schubert, “Extending the expressive power of semantic net-
works,” Ariif. Intell., vol. 7, pp. 163-168, 1976.

S. F. Smith, “Exploiting temporal knowledge to organize con-
straints,”” Intell. Syst. Lab., Robot. Inst., Carnegie-Melion Univ.,
Pittsburgh, PA, Tech. Rep. CMU-R1-TR-83-12, 1983.

M. Stefik, “An examination of a frame-structured representation Sys-
tem,” in Proc. 6th Int. Joint Conf. Artif. Inzell. Tokyo, Japan, 1979.
A. Tate, “*Generating project networks,” in Proc. 5th Int. Joint Conf.
Artif. Intell., 1977, pp. 888-893,

Ph.D. dissertation, Carnegie-

and pro-

[41] E. Turban, ““The line of balance— A management by exception
in Project Management: Techniques, Applications and Manage
sues, E. W. Davis, Ed. New York: American Institute of Ind
Engineers, 1976, pp. 39-47.

A. M. Webster, Webster’s Ninth New Collegiate Dicti.
Springfield, MA: Merriam Webster, 1983.

W. A. Woods, “What’s in a link: Foundations for semant;
works,” in Representation and Understanding, D. Babrow a
Collins, Eds. New York: Academic, 1975.

J. M. Wright, M. S. Fox, and D. Adam, SRL/2 Users Manual,]
Inst., Carnegie-Mellon Univ. | Pittsburgh, PA, 1984,

[42]

[43]

[44]

Arvind Sathi received the B.S. degree in e
cal engineering from the Indian Institute of
nology, Kanpur, India, in 1977, the M.B./
gree from the Indian Institute of Manage
Bangalore, India, in 1979, and the M.§. deg
marketing and systems sciences from Cart
Mellon University, Pittsburgh, PA, in 1983.

He expects to receive the Ph.D. degree in
from GSIA, Carnegie-Mellon University i
area of distributed project management. He i
rently a Senior Scientist at Carnegic Group,
Pittsburgh, PA, working in the area of knowledge-based system ap:
tions to project and production management. Prior to joining Car
Group, he worked on the Callisto project (an intelligent project mai
ment system sponsored by Digital Equipment Corporation) at the Rot
Institute of Carnegie-Mellon University.

Mark S. Fox (S’76—M’79—S’79—S’80—M’80~M’81) for photograph an
ography see p. 501, this issue.

Michael Greenberg received the B.S. degre:
electrical engineering from Carnegie-Mellon (
versity, Pittsburgh, PA, in 1982,

He is currently a doctoral candidate at the {
versity of Massachusetts, Amherst. He :
worked on Expert System development at the |
botics Institute of Carnegie-Mellon University .
on the Callisto project at Digital Equipment C
poration. His current research is in the area of 1
soning about uncertainty.

