
1

A Requirement Ontology for Engineering
Design

Jinxin Lin, Mark S. Fox and Taner Bilgic
Enterprise Integration Laboratory, Dept. of Industrial Engineering

University of Toronto, Toronto, Canada M5S 3G9
tel: +1-416-978-6823; fax: +1-416-971-2479; email: {jlin, msf, taner}@ie.utoronto.ca

August 1, 1996

Mark Fox
 J. Lin, M. S. Fox and T. Bilgic, (1996), "A Requirement Ontology for Engineering Design",
Concurrent Engineering: Research and Applications , Vol. 4, No. 4, pp. 279-291, Sept. 1996.

A Requirement Ontology for Engineering Design 2

Abstract

We present an ontology for representing requirements that supports a generic requirements
management process in engineering design domain. The requirement ontology we propose
is a part of a more general ontology to capture engineering design knowledge. Objects
included in this general ontology are parts, features, requirements, and constraints. We
define a generic requirements management process and raise issues that any requirement
representation must address like communication, traceability, completeness, consistency,
document creation, and managing change. We use first-order logic to define the objects and
their attributes, and identify the axioms capturing the constraints and relationships among
the objects. We show how the axioms can be used in answering the issues raised.

Key words: requirement representation, ontology, design knowledge, collaborative design,
terminology and axioms.

1.0 Introduction
Requirements Management is one of the key elements that must be addressed by concurrent
engineering (CE) [11]. Yet the representation and management of requirements is problem-
atic in CE. Requirements are often ambiguous, incomplete and redundant in a CE environ-
ment. There is a lack of traceability of the requirements and insufficient decomposition of
requirements [12]. Requirements generated by different members in a concurrent engineer-
ing team may be contradictory since different authors may have different perspectives on the
system [16]. Authors of requirements use different terminology and hence the same term is
applied to different concepts and different terms are used to denoted the same entity.
Requirements are also changed frequently during the design process due to the changes of
technology and customer's objectives [6]. Documents have to be maintained about require-
ments detailing: (i) decisions made on the scope of the requirements, (ii) resolution of
ambiguous statements, and traceability links between requirements and the system specifi-
cation and owners and approvers. Requirements are usually constructed in accordance with
legislation and standards. We view the requirements management process one of creating,
communicating, maintaining, and verifying requirements as in [3], however we take a for-
mal approach in representing requirements.

Although requirements and requirements management are encountered in many different
facets of systems engineering (see e.g. [15] and the references therein), our focus in this
paper is the engineering design domain which requires the services and collaboration of
many engineers. We are developing a Knowledge Aided Design (KAD) system to address
many issues that arise in that particular setting [1][9][10]. A major issue in concurrent engi-
neering and collaborative design is the creation and maintenance of a suitable representation
for design knowledge that will be shared by many design engineers. This knowledge
includes many concepts such as component structure, features, parameters, constraints,
requirements, and more. In this paper, we concentrate on requirements and propose an
ontology that supports the requirement management process.

A Requirement Ontology for Engineering Design 3

In Section 2.0 and Section 3.0, we identify the issues raised by the requirements manage-
ment process and introduce a formal way of representing the underlying knowledge. We
also transcribe the issues raised as competency questions (Section 3.1). In Section 4.0, we
present the product ontology which complements the requirements ontology discussed in
detail in Section 5.0. In Section 5.5, constraints and deductive rules are discussed. These
notions, together with the ontology described in the earlier sections constitute tools for rea-
soning about requirements and hence addressing issues raised. In Section 6.0, we give some
example queries to show how the issues are tackled within our formalism. Section 7.0 con-
cludes the paper.

2.0 Motivation
In [6], Fox and Salustri present a model of systems engineering suitable for the design of
complex artifacts. The artifact is usually composed of many sub-systems which in turn com-
posed of other sub-systems or components. Customer requirements are decomposed into
requirements for the various sub-systems. Then design is proposed for each sub-system and
the relationships between customer requirements and the specifications of the sub-systems
derived. At the same time the analysis and testing of the systems are defined. Figure 1 shows
the V-model highlighting the decomposition and integration aspects of system design. The
left arm of the V shows the decomposition of requirements, and the decomposition of con-
cept, analysis and design driven by the decomposed requirements. The right arm shows the
bottom-up integration & testing of the subassemblies and final assembly. Concurrency in the
V-model is achieved in two ways: vertically, where lower levels on the left of the V are
begun before higher level designs are completed, and horizontally where Assembly and Test
is performed for each level of design before or during the elaboration of lower levels.

FIGURE 1. V-Model of System Design

C A D R

C A D R
C A D R

C A D R

C A D R
C A D R

C A D R
C A D R

C A D R
C A D R

AT MA+I

ATA+I

AT MA+I
AT MA+I

Hierarchical Design Integration and Test

C: Concept
A: Analysis
D: Design
R: Requirements

A+I: Assembly & Integration
AT: Acceptance Testing
M: Maintenance

A Requirement Ontology for Engineering Design 4

The V-model for systems engineering management is complex. The degree of concurrency
combined with the levels of refinement and composition make it particularly difficult to
manage requirements.

The typical approach to defining requirements is rather informal at the start of the life cycle
and it is assumed that elaborations on the higher level requirements will make them more
precise. However, in the aerospace industry the requirements have been rigorously defined
right from the very beginning mainly due to the strict legislations imposed by the customers.
Furthermore, it is often the case that the business contracts are based on the requirements
documents and payment is conditioned on the demonstration of the artifact to meet the
requirements. Therefore, elicitation, elaboration, documentation, satisfaction, and traceabil-
ity of requirements are of utmost importance.

In light of this and the problems discussed at the beginning of the introduction, there is a
need for a representation of requirements for engineering design that:
• Provides an unambiguous and precise terminology such that each engineer can jointly

understand and use in describing requirements.
• Is generic, reusable and easy to extend.
• Allows traceability of the requirements, with dependencies and relationships among the

requirements captured and stored.
• Support the detection of redundant or conflicting requirements.
• Integrates requirements with parts, features, parameters and constraints.
• Facilitates document creation conforming to customer/company/government rules and

regulations.
• Facilitates the change management process.

3.0 Ontology
An Ontology is a formal description of objects and their properties, relationships, con-
straints, and behaviors. As in [4], we are interested in a formal and rigorous approach to the
representation of knowledge. Our approach is:
• To provide a terminology for design that can be shared by all the engineers involved. The

engineers use the same terminology so that they can work in the same design and achieve
high-level collaboration.

• To define the meaning of the terminology using first-order logic which gives a precise
and unambiguous semantics for each term. The precision and unambiguity avoid possible
conflicts and different interpretations by different engineers.

• To develop a set of axioms capturing definitions and constraints on the terminology to
enable automatic deduction from the design knowledge. The axioms allow our system to
answer design relevant questions using not only information explicitly represented in the

A Requirement Ontology for Engineering Design 5

object model, but also what can be deduced from it. The axioms also allow integrity
checking of the design knowledge, i.e. detecting invalid data in the database and avoiding
updates introducing conflicts among the data and the object model of design.

Terminology (objects) included in our ontology include parts, features, requirements, and
constraints. We identify axioms describing the constraints and relationships among the
objects. We characterize the design activity as a process of constructing the objects and axi-
oms in the ontology as well as evaluating the satisfaction of requirements and constraints by
the product structure and parameter values.

In the KAD system, we have implemented the ontology as Prolog axioms and developed a
WWW-based interface for engineers to pose queries to the ontology which will then be
answered by the system through reasoning about the axioms. We also designed a symbology
for depicting the objects of the ontology in a graphical context deployed in the engineering
interface.

3.1 Competency of the Ontology

We follow the methodology for the design and evaluation of ontologies as described in [8].
We first identify the problems in the domain that the ontology is trying to address. These
problems are given in the forms of questions which the ontology is intended to answer. This
group of questions is called competency of the ontology. The competency questions provide
a characterization and justification for our approach and enable people to understand the
scope and limitations of the approach. We have mentioned that we will develop a set of axi-
oms (microtheory) to capture definitions and constraints on the terminology in the ontology.
This microtheory must contain a necessary and sufficient set of axioms to represent and
solve these questions, thus providing a declarative semantics for the system.

The following are some categories of competency questions supported by our ontology. In
each category we list several typical questions.
• Requirement refinement:

1. Do the decomposed requirements preserve the meaning of the original requirements?
2. Are there redundant requirements generated during the requirement decomposition
process?
3. Is a requirement an explicit statement of the customer?

• Requirement traceability:
1. Does this requirement decompose to others?
2. What is the source of the requirement?
3. Who posted the requirement?
4. Does the requirement apply internally within a particular design team or externally?

• Requirement satisfaction:

A Requirement Ontology for Engineering Design 6

1. Is a requirement satisfiable?
2. Are two (or more) requirements conflicting each other?
3. Which requirements are satisfied and which are violated?

• Version & Change:
1. Is this the latest version of the requirement?
2. What are the older versions of this requirement?
3. Does a change affect consistency of the requirements set?

• Relationships of requirements to parts:
1. Does a requirement impose a constraint on the part?
2. What are the requirements of a part?
3. On which parameter is the constraint imposed?

• Product structure:
1. What are the components of a part?
2. What features does the part have?
3. What constraints that the part must satisfy?
4. What constraints that parameter-X of the part must satisfy?
5. Where a specific type (or class) of parts are used?
6. What are components of Assembly P that exceed a certain percentage of the total
mass?

4.0 Product Ontology
In this section we describe the portion of our product ontology used by our requirements
ontology. This ontology extends the product representation used in [5].

Following the object-oriented tradition, in our ontology each object is associated with a
unique name (which can be thought of as its ID). There are two types of objects: class
(objects) and instance (objects). A class is used for representing a generalized type or cate-
gory of object, and instance for a specific member of a class. Among many others, there are
classes called part, feature, requirement, and constraint which classify the design objects.
Each of these classes can be further divided into subclasses. We denote the subclass relation-
ship by the predicate subclassOf(.,.). For example, the following says that eil_part is a sub-
class of the class part: subclassOf(eil_part, part).

An instance and a class are related by the predicated instanceOf(.,.). For example, the fol-
lowing says that a particular part, PRT131, is an instance of the class eil_part: instanceOf(-
PRT131, eil_part).

A Requirement Ontology for Engineering Design 7

Throughout this paper, we denote variables by lower case letters and constants by upper
case letters. We use p, f, r, c (with or without subscripts) to denote variables of the classes
part, feature, requirement, and constraint respectively.

4.1 Parts

A part is a component of the artifact being designed. The artifact itself is also viewed as a
part. The concept of part introduced here represents a physical identity of the artifact, soft-
ware components and services. Throughout the paper, for simplicity we use a small example
to illustrate the concepts from the ontologies we develop. Nevertheless, the concepts do
apply to more sophisticated engineering design domains. In this example, we assume that
we are designing a desk spot lamp.

The structure of a part is defined in terms of the hierarchy of its component parts. The rela-
tionship between a part and its components is captured by the predicate component_of. The
component_of is similar to the subcomponent-of, the composed-of, and the part-of relations
defined in [7], [13], and [5] respectively, except that the axioms are made explicitly.

Between two parts p and p', component_of(p, p') means that p is a component (subpart) of p'.
For example, there are three components of a desk spot lamp, namely Heavy_base,
Small_head and Short_arm:

component_of(Heavy_base, Desk_spot_lamp).
component_of(Short_arm, Desk_spot_lamp).
component_of(Small_head, Desk_spot_lamp).
...

FIGURE 2. Components of Desk Spot Lamp

The relation component_of is transitive; that is, if a part is a component of another part that
is a component of a third part then the first part is a component of the third part.

Desk_spot_lamp

Short_arm Small_headHeavy_base

component_of

........
Clip Base_cover Weight_disc

component_of

A Requirement Ontology for Engineering Design 8

(∀ p1, p2, p3) component_of(p1, p2) ∧ component_of(p2, p3) ⊃ component_of(p1, p3).

The following two axioms state that a part cannot be a component of itself, and it is never
the case that a part is a component of another part which in turn is a component of the first
part. This shows that the relation component_of is non-reflexive and anti-symmetric:

(∀ p) ¬ component_of(p, p).
(∀ p1, p2) component_of (p1, p2) ⊃ ¬ component_of(p2, p1).

A part can be a (sub-)component of another part. But since each part has a unique ID (its
name), it cannot be a sub-component of two or more distinct parts that are not components
of each other:

(∀ p1, p2, p3) component_of(p1, p2) ∧ component_of(p1, p3) ⊃ p2 = p3 ∨ compo-
nent_of(p2, p3) ∨ component_of(p3, p2).

The above four axioms guarantee that the part structure is in the form of forest consisting of
one or more trees of parts.

The component_of relation relates objects lower in the component tree to the objects higher.
By the relation it is possible to traverse upward in the component tree. There is often a need
to traverse downward in the component tree, by introducing the relation has_component,
which is defined as the inverse relation of component_of.

(∀ p1, p2) has_component(p1, p2) ≡ component_of(p2, p1). (1)

Parts can be made from the same model and be identical copies, and can be used as different
assemblies. Then they are treated as different instances of the same class and associated with
different ID. For example if we want to talk about two clips, say Clip1 and Clip2, are of the
same kind, we can create a class called Clip and say that Clip1 and Clip2 are instances of this
same class by the following terms:

instanceOf(Clip1, Clip),
instanceOf(Clip2, Clip).

Parts are classified into two types, depending upon the component_of relationship it has with
the other parts in the hierarchy. The two types are: primitive and composite.
• A primitive part is a part that cannot be further subdivided into components. This type of

parts exist at the lowest level of the artifact decomposition hierarchy. Therefore, a primi-
tive part cannot have sub-components.
(∀p) primitive(p) ≡ ¬ (∃ p') component_of(p', p)
Primitive parts serve as a connection between the design stage and the manufacturing
stage.

• A composite part is a composition of one or more other parts. A composite part cannot be
a leaf node in the part hierarchy; thus any part that is composite is not primitive.
(∀ p) composite(p) ≡ ¬ primitive(p).

A Requirement Ontology for Engineering Design 9

Most composite parts are assemblies, which are composed of at least two or more parts.
(∀ p) assembly(p) ≡ (∃ p1, p2) component_of(p1, p) ∧ component_of(p2, p) ∧ p1 ≠ p2.

Sometimes a designer may need to find out the direct components of a part. A part is a direct
component of another part if there is no middle part between the two in the product hierar-
chy.

(∀ p1, p2) direct_component_of(p1, p2) ≡ component_of(p1, p2) ∧ ¬ (∃ p') compo-
nent_of(p1, p') ∧ component_of(p', p2).

That is, p1 is a direct component of p2 if p1 is a component of p2 and there is no p' such that
p1 is a component of p' and p' is a component of p2.

4.2 Features

There are different kinds of features associated with a part, e.g., geometrical features, func-
tional features, assembly features, mating features, physical features, etc. [2][14]. We focus
on geometrical and functional features. Examples of geometrical features are hole, slot,
channel, groove, boss, pad, etc.; these are also called form features. Designers usually have
in mind the purposes that they want these features to serve. For example, a designer intro-
duces a hole as a feature to the arm of a desk spot lamp so that an electrical cord can run
through it. Functional features describe the functionality of a part; they define what the part
can be used for.

A part and its features are related by the predicate feature_of(f, p), saying that f is a feature
of part p. The following term represents the fact that a hole feature, called Hole3, is intro-
duced in the short arm of the desk spot lamp:

feature_of(Hole3, Short_arm).

There can be composite features that are composed of several sub-features. For example, a
threaded hole is a feature, which can be a component of a group of threaded holes that form
a mounting feature. The term subfeature_of(f1, f2) says that feature f1 is a subfeature of f2.

Figure 3 shows the part Short_Arm and its features.

A Requirement Ontology for Engineering Design 10

FIGURE 3. Features of Short Arm

It has the following subfeature_of terms.
subfeature_of (Ext_thread1, Threaded_bar_1).
subfeature_of (Bar_1, Threaded_bar_1).
subfeature_of (Bar_2, Threaded_bar_2).
subfeature_of (Ext_thread2, Threaded_bar_2).

The following axiom says that a subfeature of a feature of a part is also a feature of the part:
(∀ f1, f2, p) subfeature_of(f1, f2) ∧ feature_of(f2, p) ⊃ feature_of(f1, p).

The feature_of and subfeature_of have inverse relations has_feature and has_subfeature
defined in terms of axioms similar to (1), which we omit here.

4.3 Parameters

Parts can have parameters that define their properties such as weight, color, diameter, mate-
rial, surface finish, etc. So can features (but the parameters must be meaningful with respect
to features), e.g. a hole feature has a parameter representing the diameter of a hole. Parame-
ters are denoted by functions in the first-order logic; for instance, the color of the Short_arm
is denoted by color(Short_arm).

Information about a parameter such as its type (string, integer, real number, boolean, etc.),
unit of measurement (pound, kg, liter, etc.), and other related information need to be
recorded. This is represented by the predicates:

type(para_name, part_or_feature, type),
unit(para_name, part_or_feature, unit),
...

For example, type and unit information of a weight parameter of any part p is defined as:

Short_arm

Round_bend Threaded_bar_2Threaded_bar_1

subfeature_of

Bar_1Ext_thread1

subfeature_of

Ext_thread2Bar_2

feature_of

Hole3

A Requirement Ontology for Engineering Design 11

type(Weight, p, Real),
unit(Weight, p, Pound).

And for a diameter parameter of a hole, it is:
type(Diameter, Hole3, Real),
unit(Diameter, Hole3, Centimeter). (“cm” as the shorthand)

A parameter is associated with a domain defining the values that the parameter can obtain.
In our framework, we specify this by the a domain constraint discussed in a later section.

4.4 Version

Design is an evolutionary process during which changes occur frequently. Before reaching
its maturity each object of requirements, parts, features, and constraints may undergo many
transformations and revisions. Versions of the objects are created to record the history of the
design. We regard each version itself to be an object, which in our case is one of require-
ments, parts, features, or constraints. Version history is recorded by the predicate: derived_-
from(o,o') meaning that object o (a version) is derived from object o' (another version). Each
version has a time at which the version is created. The term creation_time(o) denotes the
creation time of a version o. In a subsequent report1, we will describe the details of the
aspect of change and version management in our ontology.

5.0 Requirements
Requirements specify the properties (functional, structural, physical, etc.) of the artifact
being designed. Initial requirements often come from the customer representing his/her
wishes. These can be vague and incomplete (in some case, even inconsistent). A process in
design is then to clarify or interpret the customer’s wishes into more concrete objectives
through consultations between the designer and the customer. In this process the initial
requirements are decomposed into sub-requirements carrying greater details of the specifi-
cation of the artifact.

5.1 Decomposition of Requirements

The hierarchy of requirements is built on the relation decomposition_of. Figure 4 shows the
decomposition of the weight requirement for the desk spot lamp. (Weight factor is particu-
larly important in designing equipments for aerospace usage, where a weight requirement of
a part is often decomposed into sub-requirements on the components of the part.)

1. In preparation.

A Requirement Ontology for Engineering Design 12

This relation decomposition_of, like the component_of, should be transitive, anti-symmetric
and non-reflexive. These axioms are similar to that of part and we do not repeat them here.
The hierarchy is a single or multiple tree structure, with the roots of the trees being require-
ments originated from the customer. We can also talk about direct decomposition of a
requirement, and primitive requirements. The definitions are again similar to that of part,
e.g. the primitive requirements are defined as the leaf requirements in a tree of the decompo-
sition hierarchy:

(∀ r) primitive(r) ≡ ¬ (∃ r') decomposition_of(r', r).

FIGURE 4. Weight Requirement Decomposition

Every requirement is associated with an expression describing in logical form the content of
the requirement. Let req_exp(r) denote the expression of requirement r. Primitive require-
ments are detailed specifications on properties of the artifact. Their logical expressions often
involve some particular parameters of one or more parts. For example, the following defines
the requirement (of the name, say, R) “The weight of the desk spot lamp must be within 2.0
 0.1 pound”.

req_exp(R) ≡ 1.9 ≤ weight(Desk_spot_lamp) ≤ 2.1. (2)

Note in this requirement the unit of measurement for weight (which is pound) agrees with
the unit of measurement information of the weight parameter. If the two are different, e.g.
the unit of measurement of the weight parameter is kilogram (i.e. we have unit(Weight,
Desk_spot_lamp,Kilogram), then pound must be converted to kilogram. Assuming that the
function pound_to_kg does the job, we have the requirement expression:

req_exp(R) ≡ pound_to_kg(1.9) ≤ weight(Desk_spot_lamp) ≤ pound_to_kg(2.1).

For conversion to/from SI units, functions like pound_to_kg can be used which must be part
of any engineering design ontology. In the following we assume that no disparity exists on
the unit of measurement for each parameter so that no conversion is needed.

weight(Desk_spot_lamp)<2

weight(Heavy_base)<=1.3

weight(Short_arm)<0.3

weight(Small_head)<=0.4

R

R1

R2

R3

* Unit of measurement: pound

decomposition_of

A Requirement Ontology for Engineering Design 13

The expression of a high level requirement can be defined explicitly as a logical sentence
(similarly to the primitive requirements above) or defined in terms of lower level require-
ments. The latter usually occurs when a higher level requirement consists of several lower
level ones and it is simply an aggregation of requirements. For instance,

R: Motor safety requirement

consists of the following two sub-requirements:

R1: There should be an emergency switch to stop the running of the motor.

R2: There should be a surface cover for the motor.

Then we have
 req_exp(R) ≡ req_exp(R1) ∧ req_exp(R2).

In this case, the decomposition_of relation can be understood as a simple “consist of” rela-
tion.

The decomposition process must ensure that the meaning of the original requirement be pre-
served. Suppose r1,..., rn are the direct decompositions of r. Then it must be the case that

req_exp(r1) ∧... ∧ req_exp(rn) ⊃ req_exp(r). (3)

That is, if the lower level requirements are satisfied then the higher level one is also. The
converse may not be true, i.e., it may not be the case that

req_exp(r) ⊃ req_exp(r1) ∧... ∧ req_exp(rn). (4)

This applies to all derived requirements, a notion we will formally discuss in the next sec-
tion. Figure 4 shows an example of derived requirements, where nothing in requirement R
mentions R1, R2 and R3, yet the later three are decompositions of R. In this case, we say
that R1, R2 and R3 are derived requirements (derived from R). We can see that (3) holds but
(4) does not.

If indeed both (3) and (4) are true, we say that the decomposition step is faithful, i.e., the
sub-requirements give an exact interpretation of the original requirement. The sub-require-
ments are also called faithful decompositions of the original requirement. Faithful decompo-
sition is desirable, since we want the original customer’s requirements being observed as
much as possible. However, it may be difficult to achieve.

5.2 Derived and Explicit Requirements

We have seen an example of explicit and derived requirement in the last section. In this sec-
tion we will formally discuss these two notions. Let explicit(r) mean that r is an explicit
requirement and derived(r) mean r is a derived requirement.

A Requirement Ontology for Engineering Design 14

A requirement is explicit if it is given by the customer or is a faithful decomposition of a
customer’s requirement.

Then the requirements at the top of the decomposition hierarchy are explicit since the initial
requirements come from the customer:

(∀ r) ¬(∃ r') decomposition_of(r, r') ⊃ explicit(r).

If a requirement is explicit then all of its ancestors are explicit:
(∀ r, r') explicit(r) ∧ decomposition_of(r, r') ⊃ explicit(r').

A requirement is derived if it is not explicit. Every derived requirement has a parent from
which the requirement is derived:

(∀ r) derived(r) ⊃ (∃ r') decomposition_of(r, r').

If a requirement is derived then all of its decompositions are derived:
(∀ r, r') derived(r) ∧ decomposition_of(r', r) ⊃ derived(r').

So for a requirement that has a parent (i.e. not a root of a tree in the decomposition hierar-
chy), it is explicit if its parent (single) is explicit and the decomposition from the parent to
the child(-ren) is faithful, and it is derived if its parent is derived or its parent is explicit but
the decomposition from the parent to the child(-ren) is not faithful.

Derived requirements are subjected to changes during the design process, but explicit
requirements are not (without negotiation with the customer). In the example shown in Fig-
ure 4, suppose in the design process R2 is found difficult to meet (i.e. Short arm weighs over
0.3 pound) while R1 and R3 are fine. A process is then triggered to revise R1, R2 and R3, re-
allocating the weights to that such as depicted in Figure 5.

FIGURE 5. Derived New Weight Requirement

weight(Desk_spot_lamp)<2

weight(Heavy_base)<=1.25

weight(Short_arm)<0.35

weight(Small_head)<=0.4

R

R1

R2

R3

* Unit of measurement: pound

decomposition_of

A Requirement Ontology for Engineering Design 15

5.3 Requirement Source

A requirement can also be distinguished as external or internal, depending on where the
requirement originated.
• External requirements are specified in a design project external to the design team,

often the customer. Modification to these requirements requires higher level approval
(e.g. negotiation with the customer), and hence is not under discretion of the designer. Let
customer(a) denote that the agent a is the customer (the concept of customer is very gen-
eral in the sense that it can be a single person, a group of people or an organization), and
req_posted_by(r, a) denote that the requirement r is posted by the agent a. Then all exter-
nal requirements are posted by customers, i.e. agents external to the design team.
(∀ r) external(r) ≡ (∃ a) req_posted_by(r, a) ∧ customer(a). (5)
If a requirement is external, then it is an explicit requirement:
(∀ r) external(r) ⊃ explicit(r). (6)

• Internal requirements are those posted by the design team members internally. These
requirements may originate as a result of the decomposition of external requirements.
They are temporary in nature and often subjected to changes during the design process.
Let design_team_member(a) denote that the agent a is a member of the design team.
(∀ r) internal(r) ≡ (∃ a) req_posted_by(r, a) ∧ design_team_member(a).

It is important to know whether a requirement is external or internal. A requirement origi-
nated external to the design team need to be dealt differently than a requirement originated
internal to the team. This information is very useful when there is a violation of the require-
ments, and so some of them need to be relaxed or modified.

The source of a requirement is the top level requirement from which the current requirement
is decomposed. Let req_source(r1, r2) denote that r2 is the source of r1.

The following axiom defines the source of a requirement in terms of the decomposition hier-
archy.

(∀ r1, r2) req_source(r1, r2) ≡ decomposition_of(r1, r2) ∧ ¬(∃ r) decomposition_of (r2,
r).

Requirements can subsume each other. The subsume relation is:
(∀ r1, r2) subsume(r1, r2) ≡ [req_exp(r1) ⊃ req_exp(r2)]. (7)

Thus if r1 subsumes r2 and both r1 and r2 are decompositions of some other requirement r,
then r2 can be deleted from the decomposition hierarchy of r without affecting the meaning
of r. The subsume relation can be used to determine redundancy in the requirement decom-
position process.

With the subsume relation, we can give a property of faithful decomposition. If r1,..., rn are
faithful decompositions of r, then we have:

A Requirement Ontology for Engineering Design 16

subsume(r, r1) ∧... ∧ subsume(r, rn).

This property is easily derived from (4).

5.4 Several Classes of Requirements

Requirements can be classified into physical, structural, functional, cost, performance
requirements, (and many others), depending on the properties of the artifact that the require-
ments concern with. Below we list some examples of the requirements and their logical
descriptions.
1. Physical requirements are requirements related to “physical” properties of the artifact

such as weight, height, color, material, stiffness, power consumption, etc. In the desk spot
lamp example, we may have the requirement “The weight of a desk spot lamp must be
within 2.0 ± 0.1 pound”.
req_exp(R) ≡ (∀ p) desk_spot_lamp(p) ⊃ 1.9 ≤ weight(p) ≤ 2.1. (8)
Note that this logical sentence is essentially the same as (2) except that here we assume
the exact name of the artifact is unknown while in (2) it is known.

2. Structural requirements are requirements about decomposition of the artifact into sub-
parts and the topological arrangement of them, or requirements about form features of the
artifact. For example, the customer may specify that the desk spot lamp must consist of a
base, a head and an arm. This can be described as the logical sentence:
req_exp(R) ≡ (∀ p) desk_spot_lamp(p) ⊃ (∃ p1, p2, p3) base(p1) ∧ head(p2) ∧ arm(p3) ∧
component_of(p1, p) ∧ component_of(p2, p) ∧ component_of(p3, p).
Some structural requirements may be about form features of the artifact, e.g. “the short
arm must have a hole of diameter ranging between 1 ± 0.5 cm so that an electrical cord
can run through it”.
req_exp(R) ≡ (∀ p) arm(p) ⊃ (∃ f) hole_feature(f) ∧ feature_of(f, p) ∧ 0.5 ≤ diameter(f) ≤
1.5.

3. Performance requirements specify the performance goals for the artifact. The following
is an example of the performance requirement “The artifact (desk spot lamp) should be
able to illuminate more than half a square meter of room”:
req_exp(R) ≡ (∀ p) desk_spot_lamp(p) ⊃ (∃ f) illuminating_feature(f) ∧ feature_of(f, p) ∧
illumination_area(f) ≥ 0.5.
This says that the desk spot lamp should have a feature (called “illuminating”) associated
with a “illumination_area” whose value is greater than 0.5 (square meter).

4. Functional requirements specify functional properties of the artifact. A designer usually
introduces functional features to the artifact in response to functional requirements. The
following is an example of the functional requirement “The base (of the desk spot lamp)
should provide support to the artifact”:
req_exp(R) ≡ (∀ p) base(p) ⊃ (∃ f) provide_support_feature(f) ∧ feature_of(f, p).

A Requirement Ontology for Engineering Design 17

5. Cost requirements give restriction on the cost of manufacturing the artifact. There may be
requirements on cost of designing and assembling as well. Cost requirements are some-
times important factors in design. They are reflected in choice of material (economical
vs. expensive) and introduction of features (simple vs. sophisticated).
“The total cost of manufacturing the artifact (desk spot lamp) should be no more than
$50”:
req_exp(R) ≡ (∀ p) desk_spot_lamp(p) ⊃ cost(p) ≤ 50.

5.5 Constraints

Constraints are statements that must be satisfied by design. Since it puts restriction on the
design, each primitive requirement is also viewed as a constraint. That is, requirements are
decomposed into constraints at the final step of the requirement decomposition process. In
addition to the constraints that decompose from requirements, there are constraints that cap-
ture various physical laws that must always be obeyed by the design. For example, if the
artifact is a geometrical object, it has to satisfy laws of geometry and topology, often
described as equations or inequalities over parameters of the artifact. The physical laws can
also be used to derive knowledge that is previously unknown to us, e.g. if two angles in a tri-
angle structure are given then the third angle can be calculated by invoking the triangle prin-
ciple. These constraints are thus also called deductive rules. The content of each constraint
is described by a logical sentence. We call it constraint expression and denote by con_exp(c)
for a constraint c. Constraint expressions are first order logic sentences. We do not have
restriction on the formats of the sentences. Since requirements have been discussed earlier,
in the next (sub)-section we list several examples of constraints that are not (primitive)
requirements.

5.5.1 Several Examples of Constraints

One interesting group of constraints are those related to, and can be inferred from, the struc-
ture of parts. The simplest one is that the weight of a part is equal to the sum of the weights
of its (direct sub-)components. Suppose p1,..., pn are direct components of part p. Then:

weight(p) = ∑ weight(pi). (9)

The cost of a part is equal to the sum of the costs of its (direct) components and the cost of
assembling the components into the part: 2

cost(p) = ∑ cost(pi) + assembly_cost(p).

We can also calculate the power consumption of a part from that of its components. The
relation, though, may not be as simple as that of weight or cost. In addition, there may be
several levels of power consumption, depends on the modes of the components are on, e.g.

2. There are many models of cost calculations, some of which are fairly complex, involving labor rate, recur-
ring costs, etc. Here we only demonstrate an idea of how to specify a cost model in terms of axioms.

A Requirement Ontology for Engineering Design 18

operating mode, standby mode and resting mode, which we would not discuss the detail
here. In summary, each constraint in this group captures a relationship between α(p) and
α(p1),..., a(pn), where p1,..., pn are direct components of part p and α is a property of the
parts. The relationship is generally a function f such that

α(p) = f(α(p1),..., α(pn)).

Another group of constraints are domain constraint for parameters. Each parameter is asso-
ciated with one of the domain constraints. For example, the following is a constraint on the
parameter “weight”, which says weight of a part must be positive.

(∀ p) weight(p) > 0. (10)

“The base cover of the lamp must be built of the material either cast iron or cast steel”:
materal(Base_cover) = Cast_iron ∨ materal(Base_cover) = Cast_steel. (11)

“The color of Heavy_base must be one of {blue, white, black}”:
 color(Heavy_base) = Blue ∨ color(Heavy_base) = White ∨ color(Heavy_base) =
Black. (12)

5.5.2 Relationship of Parametric Constraints and Parts

Parametric constraint is a special class of constraint; it is largely concerned with parametric
design, where an artifact is characterized by a set of parameters and a set of constraints that
limit the values of these parameters [7]. As defined, parametric constraints are constraints
whose expressions have no variables [7]. According to this definition, the constraints (11)
and (12), and that from the primitive requirement (2) are parametric constraints, while (10)
and (8) are not. In talking about the relationship of constraints and parts, we restrict our-
selves on parametric constraints, since for more general constraints the relationship is diffi-
cult to discuss due to the arbitrary form of the constraint expressions.

The relationship of constraints and parts will be brought out by the notion of domain of
parametric constraint. The domain of a (parametric) constraint is in a sense similar to the
domain of a parameter (which is the set of values that can be achieved by the parameter).
The domain can be roughly thought of as the set of objects (parameters with their parts or
features) that the constraint is concerned with. Since a constraint puts restrictions on certain
parameters, the domain can also be viewed as the set of parameters (with the parts or fea-
tures that the parameters belong to) that the constraint has restrictions on.

Let domain(cr) denote the domain of cr, where cr a constraint or a requirement.

We first define the domain of a parametric constraint. The domain of a constraint c is defined
as the set of objects of the form para(pf) that appear in con_exp(c), where para is a parame-
ter name and pf is a part or a feature. Likewise, for a primitive requirement r that is a para-
metric constraint, the domain is defined as the set of objects of the form para(pf) that appear
in req_exp(r).

A Requirement Ontology for Engineering Design 19

For instance, the constraint (11) has the domain {materal(Base_cover)}, (12) has the domain
{color(Heavy_base)}, and (2) has the domain {weight(Desk_spot_lamp)}.

The domain of a non-primitive requirement is the union of the domains of its decomposi-
tions. Suppose r1, ... , rn are the direct decompositions of r. Then:

domain(r) = domain(r1) ∪ ... ∪ domain(rn).

Note that this definition of domain is a syntactical one. It might be the case that a parameter
is in the domain of a constraint (or a requirement) but the parameter is not restricted by the
constraint (or the requirement). For example, suppose we have written the following con-
straint C with the expression:

color(Heavy_base) = Blue ∨ color(Heavy_base) ≠ Blue.

Although color(Heavy_base)∈ domain(C), it is easily seen that the constraint does not have
any effect on the color of Heavy base. This kind of constraints are tautologies; they have no
meaning and should be avoided to write.

With the domain definition, the ontology can answer the following question: Does a require-
ment R impose a constraint on part P? Assuming that the requirement is decomposed into
parametric constraints, this can be answered by finding out whether there is a parameter
name para such that:

[para(P) ∈ domain(R)] ∨ (∃ f) feature_of(f, P) ∧ [para(f) ∈ domain(R)]. (13)

6.0 Example Queries
We have developed a terminology for requirements and specified axioms among the termi-
nology. We also present the terminology and axioms for parts, features, and constraints. This
forms an ontology centered on requirements in engineering design. The ontology can be
used for answering many common sense questions, by deduction using a theorem prover. In
this section we demonstrate the queries that we listed in 3.1. We will emphasize the use of
axioms in answering these queries. The ontology is implemented in Prolog in an object-ori-
ented fashion similar to ROCK knowledge base system from Carnegie Group. In this imple-
mentation, predicates and functions are expressed in some uniform format which may not be
as those appear above. For example, attribute(r1, req_exp,’weight(desk_spot_-
lamp)<2’) is the implementation of req_exp(r1) ≡ weight(desk_spot_lamp)<2,
attribute(clip1, weight,0.02)the implementation of weight(clip1) = 0.02, and rela-

tioin(r11, has_decomposition,[r21,r22]) the implementation of decomposition_-
of(r21, r11) and decomposition_of(r22, r11). We keep this format to simulate the actual
output of the system.
• Requirement refinement:

Question 1:
Input: attribute(r1,req_exp,’weight(desk_spot_lamp)<2’)

A Requirement Ontology for Engineering Design 20

attribute(r11,req_exp,’weight(heavy_base)<=1.3’)

attribute(r12,req_exp,’weight(short_arm)<0.3’)

attribute(r13,req_exp,’weight(samll_head)<=0.4’).

Query(E): Do the decomposed requirements r11,r12,r13 preserve the meaning of
requirement r1?
Query(P):?- faithful_decomposition(r1,[r11,r12,r13]).
Output: not.

Axioms: In order for a decomposition to be faithful, it must satisfy both axioms (3) and
(4). The decomposition satisfies (3) but not (4), and hence does not preserve the meaning
of the original requirement. ❚

Question 2:
Input: attribute(r1,req_exp,’weight(desk_spot_lamp)<2’)

attribute(r2,req_exp,’weight(desk_spot_lamp)<2.2’)

Query(E): Is there a redundant requirement between r1 and r2?
Query(P):?- subsume(r1,r2);subsume(r2,r1).
Output: yes.

Axioms: Since subsume(r1,r2) is true by axiom (7), r2 is a redundant requirement. ❚

Question 3:
Input: customer(a12),req_posted_by(r1,a12).

Query(E): Is r1 an explicit statement of the customer?
Query(P):?- explicit(r1).
Output: yes.

Axioms: From customer(a12) and req_posted_by(r1,a12), it is concluded exter-

nal(r1) by axiom (5), and therefore explicit(r1) holds by axiom (6). ❚
• Requirement traceability:

Question 1:
Input: relation(r1,has_decomposition,[r11,r12,r13])

relation(r11,has_decomposition,[r21,r22])

relation(r12,has_decomposition,[r23,r24])

Query(E): Does requirement r1 decompose to others?
Query(P):?- decomposition_of(X,r1).
Output: X=[r11,r12,r13,r21,r22,r23,r24].

Axioms: The transitivity axiom of decomposition_of results in that r21,r22, r23,r24
are also decomposed requirements of r1. ❚

Question 2:
Input: as in Question 1.
Query(E): What is the source of r24?

A Requirement Ontology for Engineering Design 21

Query(P):?- req_source(r24,X).
Output: X=r1.

Axioms: It is concluded from the transitivity axiom of decomposition_of that r24 is a
decomposed requirement of r1. From the definition axiom of req_source, it is then con-
cluded that r1 is the source of r24. ❚

Question 3 & 4: Simple queries involving axioms of req_posted_by(r, a), external(r) and
internal(r). Omitted. ❚

• Requirement satisfaction:
Question 1 is a special case of Question 2.
Question 2: Generally, for the question “Are two requirements R1 and R2 in conflict?”,
the system first gets the primitive decompositions of R1 and R2 (i.e. the primitive require-
ments that are the decompositions of R1 and R2). Suppose R11,..., R1n and R21,..., R2n are
the primitive decompositions of R1 and R2 respectively. Then the query becomes the fol-
lowing problem:
Is req_exp(R11) ∧... ∧ req_exp(R1n) ∧ req_exp(R21) ∧... ∧ req_exp(R2n) consistent?
This reduces to the classical problem of checking consistency of a first-order sentence.
Input: attribute(r1,req_exp,’weight(desk_spot_lamp)<2’)

attribute(r4,req_exp,’weight(desk_spot_lamp)>3’)

Query(E): Are requirements r1 and r4 in conflict?
Query(P):?- conflict_requirements([r1,r4]).
Output: yes.

Axioms: The primitive decompositions of r1 and r4 are themselves. Since req_exp(r1) ∧
req_exp(r4) is not consistent, the two are declared conflicting. ❚

Question 3: Suppose R is a requirement and R1,...,Rn are primitive decompositions of R.
Then R is satisfied iff the sentence req_exp(R1) ∧... ∧ req_exp(Rn) is true and R is vio-
lated iff the sentence is false. Example omitted. ❚

• Version & Change:
Question 1 & 2: The system follows the derived_from link to retrieve the older versions
and use creation_time predicate to determine the latest version. Example omitted. ❚

Question 3: The system checks if the new set of requirements is still satisfiable. Example
omitted. ❚

• Relationships of requirements to parts:
These queries can be answered in parametric design. The first query has been discussed
in Section 5.5.2. The second query are of the same nature as the first one except that it is
necessary to find out all the requirements that impose a constraint on the part. The answer
to the third query is the parameter name para in (13).

• Product structure:
Question 1 & 2: The system uses the axioms for predicates component_of and feature_of.

A Requirement Ontology for Engineering Design 22

Question 3 & 4: Similar to the questions in relationships of parts and requirements.
Question 5:
Input: relation(desk_spot_lamp, has_component,[heavy_base, short_arm,

small_head]),

relation(heavy_base,has_component,[clip1,base_cover, weight_-
disc])

instanceOf(clip1,clip)

Query(E): Where is the part with the type clip used?
Query(P):?- component_of(P,X),instanceOf(P,clip).
Output: X=heavy_base; desk_spot_lamp.

Axioms: The question is to find out those parts that have a component of the type clip.
The transitivity axiom of the component_of relation allows the system to traverse the
links in the component tree. ❚

Question 6:
Input: relation(desk_spot_lamp, has_component,[heavy_base, short_arm,

small_head]),

relation(heavy_base,has_component,[clip1,base_cover, weight_-
disc])

attribute(clip1,weight,0.02)

attribute(base_cover,weight,0.1)

attribute(weight_disc,weight,0.7)

attribute(short_arm,weight,0.3)

attribute(small_head,weight,0.2)

Query(E): What are components of desk_spot_lamp that exceed 20% of the total mass?
Query(P):?- component_of(X,desk_spot_lamp),weight(X)> 0.2*weight(-
desk_spot_lamp).

Output: X=heavy_base; short_arm; weight_disc.

Axioms: The weights of heavy_base and desk_spot_lamp are computed from the axiom
(9). ❚

The axioms in our ontology also allow integrity checking of the design data. Some of the
data provided by the engineers may be invalid. Furthermore, update to the knowledge base
may introduce inconsistency among the data and the object model for design. For example,
suppose the user tries to provide a data such as decomposition_of(R143, R143). This violates
the axiom stating that the decomposition_of relation is non-reflexive, and therefore can be
detected easily.

A Requirement Ontology for Engineering Design 23

7.0 Conclusion
In order to make design knowledge effectively accessible across an enterprise, the knowl-
edge needs to be classified, defined and related in a well-defined terminology acceptable by
all participating engineers. In this paper we have described an ontology for requirements in
the engineering design domain. We use first-order logic to define components of the ontol-
ogy, and identify the axioms involved in the objects and their interactions with the aim of
answering common sense questions.

We discuss the issues raised by a generic requirements management process and how our
requirement ontology addresses these issues. The ontology provides communication of
requirements by defining a well-defined syntax and semantics. It addresses traceability
issues by providing explicit relations for it and allows for checking for satisfiability or con-
sistency. It provides a knowledge-base for tools that perform document creation and tools
that are responsible for managing change.

8.0 References
[1] Bilgic, T and Fox, M. S. Constraint-based retrieval of engineering design cases: context

as constraints (1996) to appear in J. Gero and F. Sudweeks (eds) Artificial Intelligence in
Design ‘96, Kluwer Academic Publishers. http://www.ie.utoronto.ca/EIL/public/ aid96/
cbret1.html

[2] Dixon J.R., Cunningham J.J., Simmons M.K., Research in designing with features, in
Intelligent CAD I, eds. Yoshikawa H., Gossard D., Proc. IFIP TC 5/ WG 5.2 workshop
on intelligent CAD, Elsevier, 1987, 137-148.

[3] Fiksel J., Hayes-Roth, F., Computer-aided requirements management, Concurrent Engi-
neering: Research and Applications (1993), 1:83-92.

[4] Fox, M., Chionglo, J.F., and Fadel, F.G. “A Common Sense Model of the Enterprise”,
Proceedings of the 2nd Industrial Engineering Research Conference, pp. 425-429, Nor-
cross GA: Institute for Industrial Engineers. http://www.ie.utoronto.ca/EIL/papers/
abstracts/14.html

[5] Fox, M.S., Finger, S., Gardner, E., Navin chandra, D., Safier, S.A., and Shaw, M.,
“Design Fusion: An Architecture for Concurrent Design”, in Knowledge-aided Design,
Academic Press Ltd., London, UK, edited by Green, M., pp. 157-195, 1992.

[6] Fox, M.S., Salustri, F.A. “A One-Off Systems Engineering Model”, AAAI Workshop on
Artificial Intelligence and Systems Engineering, August 1994, Seattle, Washington.
http://www.ie.utoronto.ca/EIL/papers/abstracts/33.html

[7] Gruber, T. R. and Olsen, G. R. The configuration design ontologies and the VT elevator
domain theory. International Journal of Human-Computer Studies 44, 569-598, 1996.

[8] Gruninger, M., and Fox, M.S., (1994), “The Design and Evaluation of Ontologies for
Enterprise Engineering”, Workshop on Implemented Ontologies, European Conference
on Artificial Intelligence (ECAI) 1994, Amsterdam, NL. http://www.ie.utoronto.ca/EIL/
public/onto_ecai94.ps

[9] Gupta, L., J. Chionglo, and M. S. Fox (1996) A Constraint Based Model of Coordina-
tion in Concurrent Design Projects, to appear in the Proceedings of WET-ICE’96. http://

A Requirement Ontology for Engineering Design 24

www.ie.utoronto.ca/EIL/DITL/WET-ICE96/ProjectCoordination/WETICE96_Project-
Coordination.fm.html

[10]Gwizdka, J., L. Louie, and M. S. Fox (1996), EEN: A Pen-based Electronic Notebook
for Unintrusive Acquisition of Engineering Design Knowledge, to appear in the Pro-
ceedings of WET-ICE’96. http://www.ie.utoronto.ca/EIL/DITL/WET-ICE96/ EEN/
EEN_WetIce96.html

[11]Hoffman, D. A overview of concurrent engineering. Tutorial Notes of 1994 Annual
Reliability and Maintainability Symposium, California, January 1994.

[12]Kott, A. and Peasant, J. L. Representation and management of requirements: The
RAPID-WS project. Concurrent Engineering: Research and Applications. Vol. No. 2.
Pages 93-106. June 1995.

[13]Product Data Representation and Exchange- Part 44 - Integrated Resources: Product
Structure Configuration, ISO 10303-44, 1992.

[14]Salomons O.W., Houten F.J.A.M. van, Kals H.J.J., Review of research in feature-based
design, Journal of Manufacturing Systems, Vol.12, No. 2, 1993, 113-132.

[15]Wieringa, R. J., Requirements Engineering: Frameworks for Understanding, John
Wiley and Sons, New York (1996).

[16]Yen, J., Liu, X. and Teh, S. H. A fuzzy logic-based methodology for the acquisition and
analysis of imprecise requirements. Concurrent Engineering: Research and Applica-
tions (1994) 2, 265-277. Wiley and Sons, New York.

