
Submitted to AAAI-94

June 1, 1994 1

An Activity Ontology for Enterprise Modelling
Michael Gruninger and Mark S. Fox 1

Department of Industrial Engineering, University of Toronto,
4 Taddle Creek Road, Toronto, Ontario M5S 1A4

tel:1-416-978-6823 fax:1-416-971-1373 internet:{gruninger, msf }@ie.utoronto.ca

Abstract

We present a logical framework for representing activities, states, and time in an enterprise inte-
gration architecture. We define an ontology for these concepts in first-order logic and consider the
problems of temporal projection and reasoning about the occurrence of actions. This framework
provides the basis for research in integrated supply chain management and enterprise engineering,
as well as a new area for the application of theories of action and time.

Content Area: Knowledge Representation

1.0 Introduction

Enterprise modelling is an essential component in defining the tasks and functionality of the vari-
ous components of an enterprise.The goal is to create generic, reusable representations of Enter-
prise Knowledge that can be applied across a variety of enterprises. Towards this end, the TOVE
(Toronto Virtual Enterprise) ontology [Fox et al 93] has been developed and applied to enterprise
engineering [Fox et al 94], enterprise integration, and integrated supply chain management. An on-
tology is a formal description of entities and their properties; it forms a shared terminology for the
objects of interest in the domain, along with definitions for the meaning of each of the terms. The
TOVE ontology currently spans knowledge of activity, time, and causality, resources, and more
enterprise oriented knowledge such as cost, quality and organization structure. The TOVE Testbed
provides an environment for analyzing enterprise ontologies; it provides a model of an enterprise
and tools for browsing, visualization, simulation, and deductive queries.

The development of the TOVE ontology is driven by the specification of tasks that arise from two
projects. The first of these is integrated supply chain management. The supply chain is a set of ac-
tivities which span enterprise functions from the ordering and receipt of raw materials through the
manufacturing of products and the distribution and delivery to the customer. The supply chain is

1. This research is supported, in part, by the Natural Science and Engineering Research Council,
Digital Equipment Corp., Micro Electronics and Computer Research Corp., and Spar Aerospace.

Mark Fox
Gruninger, M., and Fox, M.S. , (1994), "An Activity Ontology for Enterprise Modelling",
Workshop on Enabling Technologies - Infrastructures for Collaborative Enterprises , West Virginia University.

Submitted to AAAI-94

June 1, 1994 2

viewed as being managed by a set of intelligent agents, each responsible for one or more activities
in the supply chain, and each interacting with other agents in the planing and execution of their
responsibilities. This includes agents for scheduling, dispatching, resource management, logistics,
and transportation.

The second project, enterprise engineering, is concerned with the design and execution of enter-
prises. The goal of the enterprise engineering project is to formalize the knowledge required for
business process reengineering ([Davenport 93], [Hammer & Champy 93]) and create an environ-
ment that facilitates the application of this knowledge to a particular company. First, the knowledge
found in enterprise engineering perspectives such as time-based competition, activity-based cost-
ing, quality, agility, and resource management must be formally represented. This knowledge must
then be integrated into a software tool that will support the enterprise engineering function by ex-
ploring alternative organization models spanning organization structure and behaviour, analyzing
each alternative, and providing guidance to the designer.

In this paper we present a logical framework for the TOVE ontology. We present a set of tasks that
arise in integrated supply chain management and enterprise engineering and the requirements on
any ontology that is used to represent the tasks and their solution. We then apply Reiter’s solution
of the frame problem [Reiter 91] and Pinto’s formalization of occurrence and the incorporation of
time within the situation calculus [Pinto & Reiter 93] to the TOVE ontology of activity. This work
provides a new testbed for theories of action and time, extending the formalisms to problems out-
side of the traditional robotics applications.

2.0 Ontologies and Microtheories

The basic entities in the TOVE model are represented as objects with specific properties and rela-
tions. Objects are structured into taxonomies and the definitions of objects, attributes and relations
are specified in first-order logic. An ontology is defined in the following way. We first identify the
objects in our domain of discourse; these will be represented by constants and variables in our lan-
guage. We then identify the properties of these objects and the relations that exist over these ob-
jects; these will be represented by predicates in our language.

We next define a set of axioms in first-order logic to represent the constraints over the objects and
predicates in the ontology. This set of axioms constitutes a microtheory ([Lenat & Guha 90]) and
provides a declarative specification for the various tasks we wish to model. Further, we need to
prove results about the properties of our microtheories in order to provide a characterization and
justification for our approach; this enables us to understand the scope and limitations of the ap-
proach. We use a set of problems, which we call competency questions, that serve to characterize
the various ontologies and microtheories in our enterprise model. The microtheories must contain

Submitted to AAAI-94

June 1, 1994 3

a necessary and sufficient set of axioms to represent and solve these questions, thus providing a
declarative semantics for the system. It is in this sense that we can claim to have an adequate mi-
crotheory appropriate for a given task, and it is this rigour that is lacking in previous approaches to
enterprise engineering and integrated supply chain management.

The competency questions are generated by requiring that the ontologies and microtheories be nec-
essary and sufficient to represent the tasks and their solutions for the various components of the
system. Within integrated supply chain management and enterprise engineering, these include:

• Planning and scheduling -- what sequence of activities must be completed to achieve some
goal? At what times must these activities be initiated and terminated?

• Temporal projection -- Given a set of actions that occur at different points in the future, what
are the properties of resources and activities at other points in time?

• Execution monitoring and external events -- What are the effects on the schedule of the occur-
rence of external and unexpected events (such as machine breakdown or the unavailability of
resources)?

• Hypothetical reasoning -- what will happen if we move one task ahead of schedule and another
task behind schedule? What are the effects on orders if we buy another machine?

• Time-based competition -- we want to design an enterprise that minimizes the cycle time for a
product [Blackburn 91]. This is essentially the task of finding a minimum duration plan that mini-
mizes action occurrence and maximizes concurrency of activities.

The primary task which we address in this paper is that of temporal projection in an enterprise.
This induces the following set of requirements on the ontologies:

• Temporal projection requires the evaluation of the truth value of a proposition at some point in
time in the future. We therefore need to define axioms that express how the truth of a proposition
changes over time. In particular, we need to address the frame problem and express the properties
and relations that change or do not change as the result of an activity.

• We must define the notion of a state of the world, that is, define what is true of the world before
and after performing different activities. This is necessary to express the causal relationship
between the preconditions and effects of an activity.

• The time interval over which the state has a certain status is bounded by the times at which the
appropriate actions that change status occur. This interval defines the duration of a state if the sta-
tus is enabled. This is essential for the construction of schedules.

Submitted to AAAI-94

June 1, 1994 4

• We want a uniform hierarchical representation for activities (aggregation). Plans and processes
are constructed by combining activities. We must precisely define how activities are combined to
form new ones. The representation of these combined activities should be the same as the repre-
sentation of the subactivities. Thus aggregate activities (sets of activities or processes) should
themselves be represented as activities.

• The causal and temporal structure of states and subactivities of an activity should be explicit in
the representation of the activity.

3.0 Time and Action

In this section we define the ontology of time and action that is used throughout the this paper. We
represent time as a continuous line; on this line we define time points and time periods (intervals)
as the domain of discourse. We define a relation < over time points with the intended interpretation
that t < t′ iff t is earlier than t′.

One important property that must be represented is the intuition that some action a occurs and then
some action b occurs, and that there is no intervening event between a and b. Furthermore, we want
to define what holds in the world after performing some action in order to capture the notion of
causality. How do we express these notions if we have a continuous time line? The extended situ-
ation calculus of [Pinto & Reiter 93] allows us to incorporate the notions of situations and a time
line by assigning durations to situations. The primary distinction between our approach and the sit-
uation calculus is that we are using a single time line, whereas situation calculus uses a branching
time structure. Since situations have duration, they can be defined as a set of distinguished intervals
on the time line; they will be denoted by the letters σ. Further, we impose a structure over these
intervals that is isomorphic to the natural numbers by introducing the notion of successor situation
[Reiter 91]. The function do(a,σ) is the name of situation that results from performing action a in
situation σ. We also define an initial situation denoted by the constant σ0. The following axioms
establish the properties of the relation < over situations:

(∀ a, σ1,σ2) σ1 < do(a,σ2) ≡ σ1 ≤ σ2 (EQ 1)

(∀ a1,a2, σ1) do(a1,σ1) = do(a2,σ1) ⊃ a1 = a2 (EQ 2)

(∀ σ1,σ2) σ1 < σ2 ⊃ ¬ σ2 < σ1 (EQ 3)

(∀ ϕ)[ϕ(σ0) ∧ (∀ σ,a) (ϕ(σ) ⊃ ϕ(do(a, σ))] ⊃ (∀ σ) ϕ(σ) (EQ 4)

This enables us to define the intuition of no intervening events, that is, there is no situation between
a situation and its successor, which is a consequence of the axioms:

(∀ α,σ,σ′) ¬ (σ < σ′ < do(a,σ)) (EQ 5)

Submitted to AAAI-94

June 1, 1994 5

Situations are assigned different durations by defining the predicate start(s,t) [Pinto & Reiter 93].
Each situation has a unique start time; these times begin at 0 in σ0 and increase monotonically away
from the initial situation.

(∀ σ) (∃ t) start(σ,t) (EQ 6)

start(σ0,0) (EQ 7)

(∀ σ, t,t′) start(σ,t) ∧ start(σ,t′) ⊃ t = t′ (EQ 8)

(∀ a. σ, t,t′) start(σ,t) ∧ start(do(a,σ),t′) ⊃ t< t′ (EQ 9)

To define the evaluation of the truth value of a sentence at some point in time, we will use the pred-
icate holds(f,σ) to represent the fact that some ground literal f is true in situation σ. Using the as-
signment of time to situations, we define the predicate holdsT(f, t) to represent the fact that some
ground literal f is true at time t. A fluent is a predicate or function whose value may change with
time.

Another important notion is that actions occur at points in time. To represent this we introduce two
predicates, occurs(a,σ) and occursT(a,t), defined as follows:

occurs(a,σ) ≡ σ0 < do(a,σ) (EQ 10)

occursT(a,t) ≡ occurs(a,σ) ∧ start(do(a, σ), t) (EQ 11)

We will now apply this formalism to the representation of activities in an enterprise.

4.0 Activities and States

At the heart of the TOVE Enterprise Model lies the representation of an activity and its corre-
sponding enabling and caused states ([Sathi et al. 85], [Fox et al 93]). In this section we examine
the notion of states and define how properties of activities are defined in terms of these states. An
activity is the basic transformational action primitive with which processes and operations can be
represented; it specifies how the world is changed. An enabling state defines what has to be true of
the world in order for the activity to be performed. A caused state defines what is true of the world
once the activity has been completed.

An activity, along with its enabling and caused states, is called an activity cluster. The state tree
linked by an enables relation to an activity specifies what has to be true in order for the activity to
be performed. The state tree linked to an activity by a causes relation defines what is true of the
world once the activity has been completed. Intermediate states of an activity can be defined by
elaborating the aggregate activity into an activity network (see Figure 1).

Submitted to AAAI-94

June 1, 1994 6

There are two types of states: terminal and non-terminal. In Figure 1, es_fabricate_plug_on_wire
is the nonterminal enabling state for the activity fabricate_plug_on_wire and pro_fabri-
cate_plug_on_wire is the caused state for the activity. The terminal conjunct substates of es_fabri-
cate_plug_on_wire are consume_wire, consume_plug, and use_inject_mold since all three
resources must be present for the activity to occur; the terminal states of pro_fabricate_plug_on_-
wire are produce_plug_on_wire and release_inject_mold. The activity assemble2 wire_switch is
enabled by the consumption of plug_on_wire (consume plug_on_wire) and the use of an assembly
area (use asmbly_area); this is represented by the nonterminal state es2_assemble_wire_switch.
This activity causes the production of wire_switch (produce wire_switch) and the release of the
used resource (release asmbly_area); this is represented by the nonterminal state pro2_assem-
ble_wire_switch.

In TOVE there are four terminal states represented by the following predicates:use(s,a), con-
sume(s,a), release(s,a), produce(s,a). These predicates relate the state with the resource required
by the activity. Intuitively, a resource is used and released by an activity if none of the properties
of a resource are changed when the activity is successfully terminated and the resource is
released. A resource is consumed or produced if some property of the resource is changed after
termination of the activity; this includes the existence and quantity of the resource, or some arbi-
trary property such as color. Thus consume(s,a) signifies that a resource is to be used up by the
activity and will not exist once the activity is completed, and produce(s,a) signifies that a
resource, that did not exist prior to the performance of the activity, has been created by the activ-
ity. We define use and consume states to be enabling states since the preconditions for activities
refer to the properties of these states, while we define release and produce states to be caused
states, since their properties are the result of the activity.

Terminal states are also used to represent the amount of a resource that is required for a state to be
enabled. For this purpose, the predicate quantity(s,r,q) is introduced, where s is a state, r is the
associated resource, and q is the amount of resource r that is required. Thus if s is a consume state,
then q is the amount of resource consumed by the activity, if s is a use state, then q is the amount
of resource used by the activity, and if s is a produce state, then q is the amount of resource pro-
duced.

In this section, we formalize the relationship between states and activities. First we examine the
notion that an activity specifies a transformation on the world; this requires that we introduce flu-
ents for states and activities, and the actions that change these fluents. The axioms presented ade-
quate for solving the temporal projection problem for these properties of states and activities.

To formalize the notions of nonterminal states and aggregate activities, we introduce occurrence
axioms for a set of actions.

Submitted to AAAI-94

June 1, 1994 7

4.1 Successor Axioms for Status of Terminal States

The primary fluents we will consider are the values assigned to states to capture the notion of the
status of a state. We define a new sort for the domain of the status with the following set of con-
stants:{ possible, committed, enabled, completed, disenabled, reenabled}. The status of a state is
changed by one of the following actions:commit(s,a), enable(s,a), complete(s,a), disenable(s,a),
reenable(s,a). Note that these actions are parametrized by the state and the associated activity.

The next step is to define the successor axioms that specify how the above actions change the sta-
tus of a state. These axioms provide a complete characterization of the value of a fluent after per-
forming any action, so that we can use the solution to the frame problem in [Reiter 91]. Thus if we
are given a set of action occurrences, we can solve the temporal projection problem (determining
the value of a fluent at any point in time) by first finding the situation containing that time point,
and then using the successor axioms to evaluate the status of the state in that situation.

The status of a state is committed in a situation iff either a commit action occurred in the preced-
ing situation, or the state was already committed and an enable action did not occur.

(∀ s,a,e, σ) holds(status(s,a, committed), do(e, σ)) ≡ (e= commit(s,a) ∧ holds(status(s,a,possible), σ)) ∨
¬(e=enable(s,a)) ∧ holds(status(s,a, committed), σ) (EQ 12)

The status of a state is enabled in a situation iff either an enable action occurred in the preceding
situation, or the state was already committed and a complete action or disenable action did not
occur.

(∀ s,a,e, σ) holds(status(s,a, enabled), do(e, σ)) ≡ (e= enable(s,a) ∧ holds(status(s,a,committed), σ)) ∨
¬[(e=complete(s,a) ∨ e=disenable(s,a)) ∧ holds(status(s,a, enabled), σ)] (EQ 13)

The status of a state is completed in a situation iff either a complete action occurred in the preced-
ing situation, or the state was already completed.

(∀ s,a,e, σ) holds(status(s,a, completed), do(e, σ)) ≡ [e= complete(s,a) ∧ (holds(status(s,a,enabled), σ) ∨
holds(status (s,a,reenabled),σ))] ∨ holds(status(s,a, completed), σ) (EQ 14)

The status of a state is disenabled in a situation iff either a disenable action occurred in the preced-
ing situation, or the state was already disenabled and a reenable action did not occur.

(∀ s,a,e, σ) holds(status(s,a, disenabled), do(e, σ)) ≡ [e= disenable(s,a) ∧ (holds(status(s,a,enabled), σ) ∨
holds(status (s,a,reenabled),σ))] ∨ ¬ (e=reenable(s,a)) ∧ holds(status(s,a, disenabled), σ) (EQ 15)

The status of a state is reenabled in a situation iff either a reenable action occurred in the preced-
ing situation, or the state was already reenabled and a complete action or disenable action did not
occur.

(∀ s,a,e, σ) holds(status(s,a, reeenabled), do(e, σ)) ≡ (e= reeenable(s,a) ∧ holds(status(s,a,disenabled), σ)) ∨
¬(e=complete(s,a) ∨ e=disenable(s,a)) ∧ holds(status(s,a, reenabled), σ) (EQ 16)

Submitted to AAAI-94

June 1, 1994 8

Note that in each of these axioms we also specify the precondition for the action. These precondi-
tions can equivalently be expressed as the following occurrence axioms:

(∀ s,a, σ) occurs(commit(s,a), σ) ⊃ holds(status(s,a,possible), σ) (EQ 17)

(∀ s,a, σ) occurs(enable(s,a), σ) ⊃ holds(status(s,a,committed), σ) (EQ 18)

(∀ s,a, σ) occurs(complete(s,a), σ) ⊃ (holds(status(s,a,enabled), σ) ∨ holds(status(s,a,reenabled), σ)) (EQ 19)

(∀ s,a, σ) occurs(disenable(s,a), σ) ⊃ (holds(status(s,a,enabled), σ) ∨ holds(status(s,a,reenabled), σ)) (EQ 20)

(∀ s,a, σ) occurs(reenable(s,a), σ) ⊃ holds(status(s,a,disenabled), σ) (EQ 21)

How are these incorporated into the activity-state clusters, which only represent the causal rela-
tionships among states and activities? The occurrence of a commit action is not explicitly given in
the specification of an activity. However, since the status fluents can only be changed by the above
set of actions, the following sentences can be derived from the axioms:

(∀ s,a, σ) occurs(enable(s,a), σ) ⊃ (∃σ′) occurs(commit(s,a), σ′) (EQ 22)

(∀ s,a, σ) occurs(complete(s,a), σ) ⊃ (∃σ′) (occurs(enable(s,a), σ′) ∨ occurs(reenable(s,a), σ′)) (EQ 23)

(∀ s,a, σ) occurs(disenable(s,a), σ) ⊃ (∃σ′) (occurs(enable(s,a), σ′) ∨ occurs(reenable(s,a), σ′)) (EQ 24)

(∀ s,a, σ) occurs(reenable(s,a), σ) ⊃ (∃σ′) occurs(disenable(s,a), σ′) (EQ 25)

Similarly, the precondition for the commit action is that the state be possible. In [Fadel 94] it is
shown how the possible status is defined in terms of the availability of a resource for the activity.
This includes the configuration or setup of a resource as well as capacity constraints for the con-
current execution of activities with a shared resource. Axioms similar to those above would be
used to express the occurrence of the appropriate setup activities for some activity. This is neces-
sary for formalizing time-based competition, where the occurrence of setup activities is mini-
mized.

4.2 Status of Non-Terminal States

In TOVE, non-terminal states enable the boolean combination of states. We will consider four
non-terminal states:conjunctive, disjunctive, exclusive, not. What precisely does it mean for a
non-terminal state to be a boolean combination of states? For example, how do we define the sta-
tus of a non-terminal state given the status of each substate? To define this notion, we must refer
to the occurrence of the actions that change the status of the states.

Submitted to AAAI-94

June 1, 1994 9

Disjunctive states are used to formalize the intuition of a resource pool. We may have a set of
resources, such as machines or operators, that can possibly be used by an activity. The activity
only requires one of these resources, so the activity only needs to nondeterministically choose one
of the alternative resources in the pool. Thus, the status of the disjunctive state changes if one of
the resources has been selected and its status has been changed. For example, we have

(∀ s,s1,...,sn,a, σ) disjunctive(s,a) ∧ substate(s1,s) ∧ ... ∧ substate(sn,s) ⊃ occurs(enable(s,a), σ) ≡
occurs(enable(s1,a), σ) ∨ ... ∨ occurs(enable(sn,a), σ) (EQ 26)

The successor axioms for the other values of status are defined in the same way. In other words,
the occurrence of an action for a disjunctive state is equivalent to a disjunctive sentence of occur-
rence literals for each disjunct substate.

Similarly, we have the following constraints on conjunctive states:

(∀ s,s1,...,sn,a, σ) conjunctive(s,a) ∧ substate(s1,s) ∧ ... ∧ substate(sn,s) ⊃ occurs(enable(s,a), σ) ≡
occurs(enable(s1,a), σ)∧ ...∧ occurs(enable(sn,a), σ) (EQ 27)

The occurrence of an action for a conjunctive state is equivalent to a conjunctive sentence of oc-
currence literals for each conjunct substate. Note that we make the assumption that all conjunct
substates change their status at the same time.

For exclusive states we have constraints of the form

(∀ s,s1,...,sn,a, σ) exclusive(s,a) ∧ substate(s1,s) ∧ ... ∧ substate(sn,s) ⊃ occurs(enable(s,a), σ) ≡
occurs(enable(s1,a),σ) ∨ ... ∨ occurs(enable(sn,a), σ) (EQ 28)

(∀ s,si,sj,a, σ) exclusive(s,a) ∧ substate(si,s) ∧ substate(sj,s) ∧ occurs(enable(s,a), σ)⊃ (occurs(enable(si,a), σ) ≡
¬occurs(enable(sj,a), σ) (EQ 29)

so that the occurrence of an action for an exclusive state is equivalent to the occurrence of the ac-
tion for exactly one of the substates.

For not states we have the constraint that the action for the substate does not occur when the action
for the nonterminal state occurs:

(∀ s,s1,a, σ) not(s,a) ∧ substate(s1,s) ⊃ occurs(enable(s,a), σ) ≡ ¬ occurs(enable(s1,a), σ) (EQ 30)

In this way we can define arbitrary nonterminal states as occurrence axioms.

4.3 Status of Activities

Submitted to AAAI-94

June 1, 1994 10

Just as status was defined for states, we can define the status of an activity. We define a new sort
for the domain of the status of an activity with the following set of constants:{ dormant, execut-
ing, suspended, reExecuting, terminated }. The status of an activity is determined by the status of
its enabling and caused states.

An activity is dormant iff its enabling state is committed. In this case, the resources associated with
the state are committed but not yet enabled.

(∀ a,s, σ) enabling(s,a) ⊃ holds(status(a, dormant), σ) ≡ holds(status(s,a,committed), σ) (EQ 31)

An activity is executing iff either its enabling or caused state is enabled.

(∀ a, σ) holds(status(a, executing), σ) ≡(∃ s) (enabling(s,a) ∨ caused(s,a)) ∧ holds(status(s,a, enabled), σ) (EQ 32)

An activity is suspended iff its enabling and caused states are disenabled.

(∀ a,s, σ) (enabling(s,a) ∨ caused(s,a)) ⊃holds(status(a, suspended), σ) ≡ holds(status(s,a, disenabled), σ) (EQ 33)

An activity is reexecuting iff its enabling and caused states are reenabled.

(∀ a,s, σ) (enabling(s,a) ∨ caused(s,a)) ⊃holds(status(a, reExecuting), σ) ≡ holds(status(s,a, reenabled), σ) (EQ 34)

An activity is terminated iff its enabling and caused states are completed.

(∀ a,s, σ) (enabling(s,a) ∨ caused(s,a)) ⊃ holds(status(a, terminated), σ) ≡ holds(status(s,a,completed), σ) (EQ 35)

4.4 Duration

By combining the ontology of time with the ontology of states of activities, we arrive at the notion
of duration, which is essential for scheduling and the analysis of activities in time-based competi-
tion. The duration of a state is defined as the time period beginning at the time that the state is en-
abled and ending at the time that the state is completed. Similarly, the duration of an activity is
defined as the time period beginning at the time that activity begins the status of executing and end-
ing at the time that the activity begins the status of terminated. The duration of a state is represented
by the predicate state_duration(s,d), while the duration of an activity is represented by the predi-
cate activity_duration(a,d). In the representation of an activity, the duration of a state satisfies the
occurrence axiom

(∀ a,s,t,t′,d) state_duration(s,d) ≡ occursT(enable(s,a), t) ∧ occursT(complete(s,a), t′) ∧ d = t -t′ (EQ 36)

We can also define intervals for the remaining status values, such as committed:

(∀ a,s,t,t′,d) committed_duration(s,d) ≡ occursT(commit(s,a), t) ∧ occursT(complete(s,a), t′) ∧ d = t -t′ (EQ 37)

Submitted to AAAI-94

June 1, 1994 11

In [Fadel 94], the committed duration is necessary to schedule the availability of a resource for a
set of activities over some time interval. The resource must have sufficient capacity to support
each activity at every time point in the interval and the resource may not be available to one activ-
ity if it is committed to other activities .

5.0 Aggregation of Activities

An important requirement for an ontology for activities is the ability to aggregate a set of activi-
ties to form a new activity. Activity clusters may be also aggregated to form multiple levels of
abstraction. An activity is elaborated to an aggregate activity (an activity network), which then
has activities [Sathi, et al 85]. These activities are subactivities of the aggregate activity. We intro-
duce the predicate subactivity(a,a′) to denote that activity a′ is a subactivity of activity a. For
example, consider the activity clusters in Figure 1; the activities fabricate plug_on_wire and
assemble2 wire_switch are sub-activities of assemble_ws aggregation. The states es_fabricate
plug_on_wire and es2_assemble wire_switch are substates of enable_ws aggregation, and the
states pro_fabricate plug_on_wire and pro_assemble wire_switch are substates of pro_ws_aggre-
gation.

To completely specify an aggregate activity, we must define the temporal relations over its subac-
tivities and the states of the subactivities. Indeed, the definition of status for activities allows to
represent the temporal structure of an aggregate activity in terms of the enabling and caused states
of each subactivity; we do this using occurrence axioms.

Essentially, the representation of an activity consists of a sequence of actions that commit, enable,
and complete states. These actions may be partially ordered; once the actions in an activity have
been totally ordered, we then assign times to the situations in which the actions occur. Thus activ-
ities will be represented by an occurrence axiom of the form:

(∀ a, s,s1,...,sn,σ) enabling(s,a) ∧ substate(s1,s) ∧ ... ∧ substate(sn,s) ⊃ [occurs(enable(s,a),σ) ⊃ (∃ σ1,...,σn,t1,...tn)
occurs(enable(s1,a), σ1) ∧... ∧ occurs(enable(sk,a), σi) ∧occurs(complete(s1,a), σi+1) ∧ ... ∧ occurs(complete(sk,a),

σn) ∧ occursT(enable(s1,a), t1) ∧ ... ∧ occursT(enable(sk,a), ti) ∧ occursT(complete(s1,a), ti+1) ∧ ... ∧
occursT(complete(sn,a), tn)] (EQ 38)

Note that this specification of the activity does not place any constraints on the ordering over the
situations and times in which the actions occur. The complete specification of the aggregation of a
set of arbitrary activities would impose a total ordering over the occurrences. In general, this is a
scheduling problem which remains for future work.

Submitted to AAAI-94

June 1, 1994 12

FIGURE 1 plug_on_wire activity cluster

6.0 Summary

In this paper, we presented a logical formalization of the TOVE ontology of activity and time that
has been designed to specify the tasks that arise in integrated supply chain management and enter-
prise engineering. To this end, we have defined the TOVE ontologies for activities, states, and time
within first-order logic. This formalization allows deduction of properties of activities and states at
different points in time by formalizing how these properties do or do not change as the result of an
activity (temporal projection). The representation of aggregate activities, and the role of temporal
structure in this aggregation, is accomplished through axioms that allow us to reason about the oc-
currence of actions.

The ontologies for activities, states, and time defined in this paper have been implemented on top
of C++ using the ROCK knowledge representation tool from Carnegie Group. The successor state
axioms and occurrence axioms have been implemented using Quintus Prolog. The formalization
of activities is being extended to handle concurrent activities, reasoning about the availability and
capacity of resources, and activity-based costing.

assemble1
wire_switch

es1_assemble
wire_switch

pro1_assemble
wire_switch

produce_ws
aggregation

assemble_ws
aggregation

consume
wire

use
inject_mold

produce
plug_on_wire

release
inject_mold

use
asmbly_area

pro2_assemble
wire_switch

consume
plug_on_wire

release
asmbly_area

produce
wire_switch

es_fabricate
lug_on_wire

enables

enables enables

causes

causes causes

next_activity

enable_ws
aggregation

fabricate
plug_on_wire

pro_fabricate
plug_on_wire

es2_assemble
wire_switch

assemble2
wire_switch

same same

same ends*

ends*ends*

ends* - All time relations in this diagram illustrates how a state’s time interval is related to that of an
activity’s time interval. Therefore, <activity> does not end <state>, <state> ends <activity>.

has_subactivitysub-states

conjunct conjunct conjunctconjunct

elaboration_ofelaboration_ofelaboration_of

sub-states

before

temporal relation activity-state relation

consume
plug

wire plug inject_mold plug_on_wire asmbly_area wire_switch

Submitted to AAAI-94

June 1, 1994 13

This work serves as a testbed for research into enterprise engineering, enterprise integration and
integrated supply chain management, as well as opening new areas of application for theoretical
work in reasoning about time, actions, and plans.

7.0 References

[Blackburn 91] Blackburn J. Time-based Competition. Business One Irwin, 1991.

[Fadel 94] Fadel, F. Resource Ontology for Enterprise Modelling. M.A.Sc. thesis, Department of
Industrial Engineering, University of Toronto.

[Fox et al. 93] Fox, M.S., Chionglo, J., Fadel, F. A Common-Sense Model of the Enterprise, Pro-
ceedings of the Industrial Engineering Research Conference 1993.

[Fox et al 94]Fox, M. S., Gruninger, M., Zhan, Y.. Enterprise engineering: An information sys-
tems perspective (to appear in Proceedings of the Industrial Engineering Research Conference
1994).

[Davenport 93] Davenport, T.H. Process Innovation: Reengineering Work through Information
Technology. Harvard Business School Press, 1993.

[Hammer & Champy 93] Hammer, M. and Champy J. Reengineering the Corporation. Harper
Business, 1993.

[Lenat & Guha 90] Lenat, D. and Guha, R.V. Building Large Knowledge-based Systems: Repre-
sentation and Inference in the CYC Project. Addison Wesley, 1990.

[Pinto & Reiter 93] Pinto, J. and Reiter, R. Temporal reasoning in logic programming: A case for
the situation calculus. In Proceedings of the Tenth International Conference on Logic Program-
ming (Budapest, June 1993).

[Reiter 91] Reiter, R. The frame problem in the situation calculus: A simple solution (sometimes)
and a completeness result for goal regression. Artificial Intelligence and Mathematical Theory of
Computation: Papers in Honor of John McCarthy. Academic Press, San Diego, 1991.

[Sathi et al 85] Sathi, A., Fox, M.S., and Greenberg, M. Representation of activity knowledge for
project management. IEEE Transactions on Pattern Analysis and Machine Intelligence. PAMI-
7:531-552, September, 1985.

