
A Theory of Complex Actions for Enterprise Modelling

Michael Gr�uninger

Department of Industrial Engineering

University of Toronto

Toronto, Canada M5S 1A4

gruninger@ie.utoronto.ca

Javier A. Pinto

Departamento de Ciencia de la Computacion

Ponti�cia Universidad Catolica de Chile

Casilla 306, Santiago 22, CHILE

javier@ing.puc.cl

Introduction

Enterprise modelling is an essential component in de�n-
ing an enterprise, such as a manufacturing facility, an
end-item distribution company, a �nancial institution,
or a university department. The goal of our enterprise
modelling research is to create generic representations
of enterprise knowledge that can be reused across a va-
riety of enterprises. Towards this end, we have been
developing the TOVE (TOronto Virtual Enterprise) on-
tology [Fox and Gr�uninger 94]. TOVE provides a rich
and precise representation of generic knowledge, such
as activities, resources, time, and of more enterprise
oriented knowledge such as cost, quality, products, and
organization structure.

In this paper, we present enterprise modelling as a
new area of application for theoretical work in reasoning
about action. We give an overview of the problems en-
countered in enterprise modelling and the requirements
that they impose on any theory of action. We outline
our approach to these problems using an extension to
the situation calculus.

Motivation for Complex Actions

In enterprise modelling, we want to de�ne the actions
performed within an enterprise, and de�ne constraints
for plans and schedules which are constructed to satisfy
the goals of the enterprise. Enterprise modelling there-
fore requires several classes of complex actions. First of
all, it is necessary to represent actions that have dura-
tion, in the sense that some uent must hold over some
time interval associated with a complex action. For ex-
ample, we need to represent complex actions such as the
use of a machine, or the consumption of a resource such
as fuel. We will refer to this class of complex actions
as duration-based actions, since the interval associated
with the action is de�ned by the occurrence of an ac-
tion that initiates the use or consumption of a resource,
and the future occurrence of an action that terminates
the use or consumption of the resource. Within the
TOVE framework, such complex actions are referred to
as activities.

Some complex actions are composed of duration-
based actions. For example, an activity such

as fabricate switch may be composed of the sub-
actions that consume wire, consume plug, and
use inject mold. Within the TOVE framework, such
complex actions are referred to as aggregate activities.
Enterprises are designed in a hierarchical fashion, so

that we need to represent the notion of aggregate ac-
tivities. For example, the activity of assembling a lamp
may be composed of the activities that fabricate the
components and then �nally assemble the components
to form the lamp.
Reasoning about activities in enterprise modelling re-

quires the representation of temporal constraints. For
example, in a steel manufacturing enterprise we may
need to represent the constraint that if we do not fold
the metal within 5 minutes of fabrication, we must re-
heat it. There may be activities that must be performed
periodically, such as every 10 minutes, or activities that
must be performed at nondeterministic intervals, such
as transporting a load of steel ingots as soon as the
truck is full.
Within enterprise modelling, we need to reason about

plans and schedules. This can be naturally done if we
consider plans and schedules to be complex actions. In
this approach, plans and schedules can be constructed
by combining complex actions, and then de�ning addi-
tional ordering and temporal constraints over the new
set of subactions.We want to be able to compare al-
ternative plans and schedules, and reason about hypo-
thetical scenarios with respect to these alternatives. In
particular, in scheduling we need to reason about the
availability of resources to support multiple activities.
We also want to de�ne properties of complex actions,

such as duration or cost, and reason about these prop-
erties within the language. A major challenge facing
many enterprises today is to be able to rapidly respond
to customer demand, and in this way reduce the lead
time from receiving a request to ful�lling the request.
This requires a characterization of schedules with the
shortest cycle time, which in turn correspond to com-
plex actions with minimum duration.

Preliminaries

Our theory of complex actions is developed using an ex-
tension to the situation calculus. The axiomatization is

Appeared in: Working Notes AA AI Spring Symposium Series 1995: Extending Theories of Action: Formal Theory and Practical Applications.

based on the discrete situation calculus [Reiter 91]. The
situation calculus is a sorted second order language with
equality. There are several domain sorts A;S;F ; T ;D
for action types, situations, uents, time, and arbitrary
domain objects.
We use the notions of an actual line of situations, lin-

ear time and the notion of action occurrences as de�ned
by [Pinto 94]. The axiomatization is as follows:

actual(S0) (1)

(8a; �) actual(do(a; �)) � actual(�) ^ Poss(a; �) (2)

(8a1; a2; �) actual(do(a1; �)) ^ actual(do(a2; �)) � a1 = a2

(3)
end(�; a) = start(do(a; �)) (4)

(8a; �) start(�) < end(�; a) (5)

start(S0) = 0 (6)

(8a; �) occurs(a; �) � actual(do(a; �)) (7)

occursT (a; t) � (9�)occurs(a; �) ^ start(do(a; �)) = t (8)

holdsT (f; t) � (9�) actual(�) ^ start(�) < t^

(8a) [actual(do(a; �)) � end(�; a) � t] ^ holds(f;�) (9)

We utilize the predicate Poss(a; �) that is true when-
ever the action a can be performed in a situation �.
This is used to inductively de�ne an ordering over sit-
uations:

(8�) :(� < S0)

(8a; �; �0) � < do(a; �0) � (Poss(a; �0)^ � � � �0)

In order to address the frame problem, we make use
of Reiter's approach [Reiter 91]. The basic idea behind
this solution is to derive successor state axioms for each
uent, which provide necessary and su�cient conditions
for a uent to be true in situation do(a; �) given the
state in situation �. The successor state axioms have
the form

(8a; �) Poss(a; �) � [holds(R; do(a; �)) �

+R (a; �) _ holds(R; �) ^ :�R (a; �)

where +R (a; �) and �R (a; �) are simple formulae which
are used to provide conditions under which an action a
produces an e�ect on a uent R.

Complex Actions and Occurrence Theories

Within our approach to enterprise modelling, complex
actions are represented as objects in the language. The
predicate Do(a; �; �0) denotes that if action a is done
in situation �, then �0 is one of the possible situations
reached.
We de�ne the relation subaction(a; a0) to denote that

action a is a subaction of action a0. We de�ne primitive
actions to be those with no subactions:

(8a) primitive(a) � :(9a0) subaction(a0; a) (10)

(8a; �; �0) primitive(a) �

(Do(a;�; �0) � Poss(a; �) ^ �
0 = do(a; �)) (11)

A complex action is de�ned by specifying its subac-
tions and constraints over the occurrence of these sub-
actions.

De�nition 1 A formula O<(x1; :::; xn) is an ordering
formula if it only mentions the terms x1; :::; xn, does
not include any quanti�ers, and all its literals are <
literals.

De�nition 2 A complex action A is de�ned by

(8�; �0)Do(A; �; �0) � �Do(A; �; �
0)

where �Do(A; �; �
0) is a formula whose only free vari-

ables are �; �0 and which contains only subaction liter-
als, Do literals for these subactions, and ordering for-
mulae.

We will refer to �Do(A; �; �
0) as an occurrence theory.

In addition, we will need to reason about external
actions and their role in complex actions. For example,
an action may require the occurrence of an external
event to establish the uents to satisfy its precondition
axioms. The occurrence of such actions is entailed by
the occurrence theory �Do(A; �; �

0).
Our approach is to reason about complex actions by

reasoning about the occurrence theories that de�ne the
complex actions. In particular, various classes of com-
plex actions, such as those de�ned in [Lesperance et al.
94] (conditionals, nondeterministic choice, iteration), as
well as concurrent actions can be represented using oc-
currence theories.
Within enterprise modelling, we are especially con-

cerned with the class of duration-based complex ac-
tions. Such an action is composed of two primitive sub-
actions, such that the second subaction occurs some
time after the �rst subaction. Furthermore, the �rst
subaction initiates a uent that is the precondition for
the second subaction. Intuitively, this uent represents
the interval over which the complex action is executing.
For example, if the complex action is assemble lamp,
then there is a uent associated with the interval, say
assembling lamp, which is initiated by the �rst sub-
action, and terminated by the second subaction of
assemble lamp. The duration of the complex action
would be the amount of time between the occurrence
of the two subactions. In addition, there may be state
constraints relating the interval uent with uents for
resources required by the action.

De�nition 3 A duration-based complex action A is
represented by the following sentences:

(8�; �0)Do(A; �; �0) �

(9�1; �2) subaction(A1; A) ^ subaction(A2; A)

^primitive(A1) ^ primitive(A2)

^�1 = do(A1; �) ^ �0 = do(A2; �2) ^ �1 � �2

where A1; A2 are ground action terms that satisfy the
following successor state and precondition axioms:

holds(F; do(a; �)) � a = A1 _ holds(F; �) ^ a 6= A2

Poss(A2; �) � holds(F; �)

We will refer to F as an interval uent.

In order to evaluate and justify our approach to com-
plex actions, we use the problem of temporal projection:

Problem 1 Given a ground formula �Do(A; S0; S1),
determine

�Do(A; S0; S1) j= Q(S1)

for some ground simple formula Q(�).

We show that our theory of complex action is su�-
cient to characterize the solutions to this problem.
The results of [Reiter 91] prove that the theory of

primitive actions proposed there is justi�ed with re-
spect to temporal projection. This paper generalizes
these results from primitive actions to complex actions.
We show that the de�nition of the e�ects of complex
actions is correct given the de�nition of successor state
axioms Tsucc and precondition axioms Tpre for primitive
actions in [Reiter 91]. We state conditions under which
a complex action is complete with respect to temporal
projection.
Related to the problem of temporal projection is the

quali�cation problem. The intuition formalized in [Lin
and Reiter 94] is that the speci�cation of preconditions
for action prevents the violation of quali�cation con-
straints by the e�ects of the action. We show that this
intuition is preserved by our de�nition of complex ac-
tions.

E�ects of Complex Actions

In order to justify our theory of complex action with
respect to temporal projection, we are �rst faced with
the problem of de�ning the e�ects of a complex action.
In general, Do(a; �; �0) de�nes a set of branches in

the tree of situations. These branches arise from dif-
ferent total orderings consistent with the partial order-
ing of subactions within an action, or from di�erent al-
ternative subactions in a nondeterministic complex ac-
tion. This branch structure of a complex action must be
made explicit; intuitively, each branch must correspond
to a legal action sequence.
In specifying the e�ects of a complex action de-

�ned by �Do(A; �; �
0), we �rst show that these e�ects

are reducible to the e�ects of the primitive actions in
�Do(A; �; �

0).

Theorem 1 Let Tsucc be the set of successor state ax-
ioms for the primitive actions and Tpre be the set of
precondition axioms for the primitive actions. Given an
occurrence theory �Do(A; �; �

0) for a complex action A,
we have

�Do(A;�; �
0) [Tsucc [Tpre j=

(8a; �; �0; ��)Do(A;�; �0) ^ � < �
�

< �
0

� [holds(R;��) �

(9a0; �00) primitive(a0) ^
+

R (a
0

; �
00)

^(� � do(a0; �00) � �
�)

^:(9a00; �000) primitive(a00) ^
�

R (a
00

; �
000)

^(do(a0; �00) � do(a00; �000) � �
�)

_holds(R;�) ^ :(9a0; �00) primitive(a0) ^
�

R (a
0

; �
00)

^(� � do(a0; �00) � �
�)

Thus, a uent R holds in a situation i� either there is an
earlier situation in which a primitive action establishes
the uent and no action occurs to falsify the uent,
or the uent initially held, and no action occurred to
falsify it.
This de�nition of the e�ects of Do depends on the

occurrence of primitive actions. These actions may not
be subactions of A; the occurrence of some of these ac-
tions is entailed by the subactions of A. However, other
actions that are not required by A may also occur; in
what sense would the e�ects of these actions be related
to the e�ects of A? It is therefore necessary to de�ne
the e�ects of a complex action using a minimization
policy with respect to the occurrence of actions on a
branch.
Another motivation for the minimization policy arises

from issues in enterprise modelling. Recall that we wish
to combine actions together to form new complex ac-
tions. We may have one action A that consists of sub-
actions A1 followed by A2 and another action A0 that
consists of subactions A3 followed by A4. If we want
to combine these actions together with the ordering
A1; A3; A2; A4, then we cannot have A2 occurring in
the successor situation for A1, since A3 must be able to
occur in between them. We thus want to represent com-
plex actions by orderings over the occurrence of their
subactions, but de�ne their e�ects with respect to the
assumption that no unnecessary actions occur on the
same branch.
To characterize the e�ects of a complex action along a

branch, we de�ne a set of ordering formulae O(a; �; �0)
over the subactions of a, and show that by using the
minimization policy of [Pinto 94], minimal models of
�Do(A; �; �

0) [O(A; �; �0) correspond to legal action
sequences.

De�nition 4 Let O(A; �; �0) be a set of ordering for-
mulae over a set of subactions of A as de�ned by
�Do(A; �; �

0).

1. The orderings in O(A; �; �0) are consistent with the
de�nition of the complex action.

�Do(A; �; �
0) 6j= :O(A; �; �0)

2. O(A; �; �0) de�nes a total ordering.

O(A; �; �0) j= subaction(Ai; A) ^ subaction(Aj ; A)

� (8�00; �000; ��; ���)(Do(Ai; �
00; �000)^Do(Aj ; �

�; ���)

� (�000 < ��� _ �000 = ��� _ ��� < �000))

3. The orderings in O(A; �; �0) de�ne a maximal order-
ing:

�Do(A; �; �
0) [O(A; �; �0) j= (9��) � < �� < �0

i�
O(A; �; �0) j= (9��) � < �� < �0

Given
this set of ordering formulae we can show that models
of Circ(�Do(A; S0; Sn)[O(A; S0; Sn);Do; start) de�ne
legal action sequences.

Theorem 2 Suppose �Do(A; S1; Sn)[O(A; S0; Sn) en-
tails a sentence of the form

subaction(A1; A)^:::^subaction(An; A)^S0 < do(A1; S1)

^:::^ S0 < do(An; Sn) ^ S1 < ::: < Sn

Then every model of
Circ(�Do(A; S0; Sn)[O(A; S0; Sn);Do; start) satis�es

Sn = do(An; Sn�1) ^ :::^ S2 = do(A1; S1) ^ S0 = S1

In [Reiter 91], temporal projection is equivalent to
computing the e�ects of a legal action sequence using
regression. By the preceding theorem, we can use re-
gression to compute the e�ects of complex actions us-
ing the legal action sequences de�ned in the models of
�Do(A; S1; Sn) [O(A; �; �

0).
Furthermore, our de�nition of e�ects of a com-

plex action on each branch is complete with re-
spect to temporal projection. That is, all models of
Circ(�Do(A; S0; Sn) [O(A; �; �

0);Do; start) agree on
the extension of the predicate holds.

Theorem 3 For any two models M;M0 of

Circ(�Do(A; �; �
0) [O(A; �; �0);Do; start)

and any variable assignment �, suppose M; � j=
Do(A; �; �0) and M0; � j= Do(A; �; �0). Then

M; � j= holds(f; �) iff M0; � j= holds(f; �)

i�

M; � j= holds(f; �0) iff M0; � j= holds(f; �0)

Complex Action Precondition Axioms

The theorems in the preceding section de�ned the rela-
tionship between complex actions and legal action se-
quences. If a sequence of actions corresponding to a
complex action is not legal, that is, if it violates some
state constraint, then the complex action must be de-
�ned in such a way that we prevent this sequence from
occurring. Recall that all e�ects of a complex action
are e�ects of the primitive subactions. Therefore, if a
complex action A violates a state constraint, there ex-
ists a primitive subaction whose e�ects violate the state
constraint.
In order to characterize the notion of precondition

axioms for complex actions, we need to show how the
de�nition of a complex action A prevents the e�ects
of A from violating state constraints. In this way we
extend the characterization of precondition axioms for
primitive actions in [Reiter and Lin 94].

Theorem 4 Suppose �Do(A; �; �
0) is consistent. Let

Tqual be a set of quali�cation constraints. For every

quali�cation constraint (8�) QC(�) 2 Tqual

Tsucc [Tpre [�Do(A;�; �
0) j=

Do(A;�; �0) � ((8�00) � � �
00

� �
0

^Q(�) � Q(�00))

It is very important not to confuse violated state
constraints with actions that prevent the action from
achieving its intended e�ects. If it is possible for the
constraint to be violated, then it is not a state con-
straint; this will be discussed in the section on actual
line constraints.
Recall that we reason about complex actions by rea-

soning about the occurrence theories that de�ne them.
In this approach we want to characterize the set of le-
gal action sequences de�ned by the complex action A
in terms of occurrence constraints over the subactions
of A. What we want is a set of occurrence sentences �
such that Tsucc [Tpre [�Do(A; �; �) is consistent i�

�Do(A; �; �) j= �

Consider the special class of complex actions com-
posed of duration-based complex actions. The precon-
ditions for the subactions may require that a uent hold
over the interval corresponding to the complex action.
For example, we need to be able to specify that a ma-
chine must be functional over the entire interval that
it is being used, or that some quantity of a resource
that is being consumed must be available over the en-
tire interval associated with the action. How are these
constraints on the set of legal action sequences de�ned
by duration-based complex actions?
First of all, it is important to realize that a legal ac-

tion sequence corresponding to a duration-based com-
plex action may contain actions that falsify the interval
uent. In such cases, there exist actions that occur later
in the sequence to reestablish the uent so that the �nal
subaction is Poss. For example, a car needs gas in the
tank for the duration of the trip; if the tank becomes
empty, an action must occur to re�ll the tank before
the car can reach its destination. Thus, if

Tsucc j= holds(F1; do(a; �)) � a = A1_holds(F1; �)^a 6= A2

then any duration-based complex action composed of
A1 and A2 must satisfy

(do(A1; �
0) � � � do(A2; �

00) ^ :holds(F; �)

^((8��) Poss(A2; �
�) � holds(F; ��)) �

(9a; �1) � < do(a; �1) � �00 ^ holds(F; do(a; �1))

There may be interval uents that cannot be achieved
once they have been falsi�ed. In this case, any action
that falsi�es the interval uent cannot occur during the
complex action:

:holds(F; do(a; �))^:(9�0)do(a; �) � �0^Poss(A1; �
0)

� :(9��; �1; �2) do(A1; �1) � do(a; �� � do(A2; �2)

Finally, there may be quali�cation constraints of the
form

(8�; �1; �2) :(holds(F1; �) ^ holds(F2; �))

for two interval uents F1; F2. This arises in problems
concerning concurrent complex actions. If an action
requires exclusive use of a machine over the interval,
then two actions cannot concurrently use the machine,

and hence the intervals cannot be overlapping. If A2 is
the action that terminates F1 and A3 is the action that
initiates F2, then the complex actions must satisfy the
sentence

(8�; �1; �2) :(holds(F1; �) ^ holds(F2; �))

� do(A2; �1) < do(A3; �2)

We are currently working on a generalization of these
intuitions for a complete characterization of the legal
action sequences corresponding to duration-based com-
plex actions.
For complex actions which are composed of duration-

based actions, the characterization of legal action se-
quences depends on the ordering of the subactions. In
general, an activity is executing if the uents associated
with the appropriate duration-based subactions hold.
The problem lies in determining this set of subactions,
since the de�nitions depend on the particular ordering
and occurrence of actions in the activity. For example,
an activity may require the use of an inject mold ma-
chine between times T1 and T2, and the use of a lathe
between times T3 and T4, where T1 < T3 < T2 < T4.
If the lathe is broken at some time between T1 and T2,
it does not a�ect the possibility of the activity, since
the use of the lathe is not yet required. Similarly, if
the inject mold machine breaks down between T3 and
T4, the activity should still be able to be executing,
since the use of the inject mold machine is no longer re-
quired. The characterization of legal action sequences
for activities is also a focus for future work.

Actual Line Constraints

In addition to de�ning complex actions in terms of pre-
conditions and successor state axioms, it is also neces-
sary to introduce a new class of constraints on action
occurrences.
For example, an important problem for end-item dis-

tribution enterprises is reasoning about the shelf life of
perishable products. Consider the following sentences,
which state that a resource, such as milk, will spoil if
any quantity of the resource still exists at the expiry
date:

(8r; q; t) expire date(r; t) ^ holdsT (quantity(r; q); t) ^ q > 0

� occursT (spoilage(r); t)

(8r; a; �) holds(spoiled(r); do(a; �)) �

a = spoilage(r) _ holds(spoiled(r); �)

and the constraint

(8r; �) :holds(spoiled(r); �)

This cannot be a quali�cation constraint, since there
can exist situations where spoilage occurs; however, we
do not want spoilage to occur. This is similar to the no-
tion of deontic constraints. Our approach is that these
must be constraints on actual situations { branches that
violate these constraints cannot be actual. Thus, the
above spoilage constraint should be written as:

(8�) actual(�) � :holds(spoiled(r); �)

This allows spoilage to occur on nonactual branches,
but not in any actual situation.
Another example illustrates the distinction between

intended e�ects of an action and possible e�ects of an
action. Suppose that we have the successor state ax-
ioms:

holds(edible(x); do(a; �)) �

a = bake(x) ^ (9y) holds(temp(Oven; y); �) ^ y = 300

_holds(edible(x); �)

It is possible to bake a cake in the oven at a temperature
di�erent than 300, but in such a case, the cake would
not be edible. The intended e�ects of the bake action
is that the cake is edible. We may enforce this with the
actual line constraint

(8x; �) actual(do(bake(x); �))

� holds(edible(x); do(bake(x); �))

from which we want to infer

(8x; y; �) actual(do(bake(x); �))

^holds(temp(Oven; y); �) � y = 300

Actual line constraints arise in many applications of
enterprise modelling including integrated supply chain
management (purchases as forward expectation oc-
currence axioms), inventory management (preventing
spoilage of perishable products), workow management
(the distinction between conditional actions and events
triggered by state), the de�nition of the quality of prod-
ucts in manufacturing, and the representation of design
requirements for products.
Analogous to the compilation of quali�cation con-

straints into precondition axioms, we can de�ne the
compilation of actual line constraints axioms de�ning
the preconditions for actions that occur on the actual
line. These are sentences that must be satis�ed in a
situation in order to guarantee that all actual line con-
straints will be satis�ed in the successor situation.
We therefore need to generate a set of actual line

precondition axioms of the form

actual(do(A; �)) � �A

where � is a simple state formula.
In this paper, we present the special case for primi-

tive actions only, such that �occ is empty and we are
dealing only with actual line constraints that are simple
formulae.
Let Tactual be a set of actual line constraints of the

form
actual(�) � AC(�)

where AC is a simple state formula with a unique free
variable �. Using the regression operator R de�ned in
[Reiter 91], we can obtain a set Tallowed of actual line
precondition axioms of the form

actual(do(A(x1; :::; xn); �)) �
^

�AC

These axioms are characterized by the following results:

Theorem 5 Let Tclosure be the following domain clo-
sure axiom for actions:

(8a)((9x) a = A1((x)) _ :::_ (9y) a = A1((y))

For every actual line constraint (8�)actual(�) � AC(�)
in Tactual,

Tuna [Tsucc [Tallowed [Tclosure j=

AC(S0) � (8�) actual(�) � AC(�)

Corollary 1

Tuna [Tsucc [Tallowed [Tclosure [TS0
allowed j= Tactual

where TS0
allowed is the set of actual line constraints re-

stricted to the initial state:

T S0
allowed = fAC(S0)j(8�)actual(�) � AC(�) 2 Tactualg

This corollary is analogous to that for quali�cation
constraints in [Lin and Reiter 94]{ provided that the
initial state S0 satis�es all actual line constraints, then
these constraints are satis�ed by the theory

Tuna [Tsucc [Tallowed [Tclosure [TS0
allowed

so that the actual line constraints have been \compiled"
into the actual line precondition axioms.
We can then de�ne the notion of allowable action

sequences, analogous to legal action sequences, along
which all actions can occur on the actual line.

De�nition 5 Suppose A1; :::; An is a sequence of
ground action terms. This sequence is allowable with
respect to T i�

T j= actual(do([A1; :::; An]; S0)

We briey discuss some of the issues involved in ex-
tending the above results. First, we need to consider
actual line constraints that are not simple formulae.
Goals and deadlines are represented by existential ac-
tual line constraints:

(9�) actual(�) ^ holds(F; �) ^ start(�) < T1

This allows us to reason about hypothetical scenarios
with nonactual branches where the goal is not achieved
by the deadline. However, in these cases, every action
in a sequence may satisfy the actual line constraints,
yet the entire sequence violates the constraint since the
goal or deadline is not satis�ed.
We must also incorporate occurrence theories when

compiling actual line precondition axioms. For exam-
ple, suppose we have the sentences

(8t) occursT (A1; t) � occursT (A2; t+ 5)

(8a; �) holds(F1; do(a; �)) � a = A2 _ holds(F1; �)

(8�) actual(�) � :holds(F1; �)

We intuitively want to derive the actual line precondi-
tions:

(8�) :actual(do(A1; �)

(8�) :actual(do(A2; �)

Although the second precondition axiom can be derived
using the compilation de�ned above, the �rst precon-
dition axiom can only be derived using the occurrence
sentence. We thus require a procedure for compiling
the occurrence sentences into the actual line precondi-
tion axioms.
It is important to realize that although we are rea-

soning about complex actions using occurrence theories,
the de�nition of a complex action is distinct from the
occurrence sentences that de�ne actual line constraints.
For example, conditional actions are distinct from ac-
tual line constraints de�ning the triggering of an action
by uents in a state. In the former case we have

(8�; �0)Do(A; �; �0) � (holds(F1; �) � Do(A1; �; �
0))

^(holds(F2; �) � Do(A2; �; �
0))

while in the latter case we have

(8�) holds(F1; �) � occurs(A1; �)

(8�) holds(F2; �) � occurs(A2; �)

This constraint can be violated on non-actual branches.
In addition, on the actual line, if the uent F1 holds
in any situation, then action A1 will occur; intuitively,
the action A1 is triggered by the uent. In the case of
the conditional action, however, A1 will occur if only
if we are performing the action A and F1 holds in that
situation.

References
[1] Fox, M.S. and Gr�uninger, M. (1994). Ontologies for en-

terprise integration, Proceedings of the Second Interna-
tional Conference on Cooperative Information Systems,
pages 82-89.

[2] Lesperance, Y., Levesque, L., Lin, F., Marcu, D.,
Reiter, R., and Scherl, R. A Logical Approach to
High-Level Robot Programming { A Progress Report.
In Benjamin Kuipers, editor, Control of the Physical
World by Intelligent Systems, Papers from the 1994
AAAI Fall Symposium, pages 79-85, New Orleans, LA,
November, 1994.

[3] Lin, F. and Reiter, R. (1994) State constraints revis-
ited, to appear in the Journal of Logic and Computa-
tion.

[4] Pinto, J. (1994). Temporal Reasoning in the Situation
Calculus, Technical Report KRR-TR-94-1, Department
of Computer Science, University of Toronto.

[5] Reiter, R. (1991). The frame problem in the situation
calculus: a simple solution (sometimes) and a com-
pleteness result for goal regression. In Vladimir Lifs-
chitz, editor, Arti�cial Intelligence and Mathematical

Theory of Computation: Papers in Honor of John Mc-
Carthy, pages 418-440. Academic Press, San Diego.

