Issues 1n ENterprise viouciiiy

Mark S. Fox

Department of Industrial Engineering

University of Toronto

4 Taddle Creek Road

Toronto, Ontario M5S 1A4 CANADA

tel: 1-416-978-6823; fax: 1-416-971-1373; internet: msf@ie.utoronto.ca

Abstract

Computerization of enterprises continues unabated and so does the cost of software. The
availability of a generic, common-sense enterprise model is necessary if we are to reign in
costs. But in order to construct useful Generic Enterprise Models (GEM) there are a number
of issues that have to be addressed. In this paper we explore the following issues: Is there
such a thing as a generic enterprise model? Can the terminology be precisely defined? Does
all knowledge need to be explicit? Need there be a single, shared enterprise model? How
can we determine which is a better enterprise model? Can an enterprise model be consis-
tent? Can an enterprise model be created and kept current? Will the organization accept an
enterprise-wide model? We then briefly describe the TOVE project, which attempts to ad-
dress many of these issues.

1.0 Introduction

As described in a recent report on Agile Manufacturing [Nagel et al. 91}, if an industrial
organization is to compete in the coming decade, they must produce products that are: of
consistently high quality throughout the product’s life, customised to local market needs,
open in that they may be integrated with other products, environmentally benign, and tech-
nically advanced. The key to achieving these capabilities is “agility”. Agility implies the
ability to: continuously monitor market demand, quickly respond by providing new prod-
ucts, services and information, quickly introduce new technologies, and quickly modify
business methods. But achieving agility requires far greater integration of functions within
the enterprise, and between enterprises, than has ever been achieved; enterprises must be
task oriented as opposed to organisation oriented; expertise must flow freely across the en-

terprise to where it is needed.

Integration is a step along the road to agility. Yet it contradicts decades of management sci-
ence teachings. We have been taught that in order to cope with the complexity of enterpris-
es, we have to decompose them into manageable pieces; each piece having minimal
interaction with the others. But the decomposition impedes the free flow of information and
knowledge, and the coordination of actions. In order to break-down these organizational
barriers, Hansen [91] has identified five principles of integration:

219

S. Y. Nof (ed.), Information and Collaboration Models of Integration, 219-234.
© 1994 Kluwer Academic Publishers. Printed in the Netherlands.

20

1. “When people understand the vision, or larger task, of an enterprise and are given
the right information, the resources, and the responsibility, they will 'do the right
thing'.”

2. “Empowered people - and with good leadership, empowered groups - will have
not only the ability but also the desire to participate in the decision process.”

3. “The existence of a comprehensive and effective communications network ...
This network must distribute knowledge and information widely, embracing the
openness and trust that allow the individual to feel empowered to affect the
‘real’ problems.”

4, “The democratization and dissemination of information throughout the network
in all directions irrespective of organizational position ... ensures that the Inte-
grated Enterprise is truly integrated.”

5. “Information freely shared with empowered people who are motivated to make
decisions will naturally distribute the decision-making process throughout the
entire organization.”

hese principles focus on two major issues: 1) how to motivate employees, and 2) how to
‘ovide employees with the right information to do their job. But in achieving the latter,
ere is a limit to how many meetings you can atiend, memos you can read, and trips you
in make! The question then is how can technology aid integration?

ver the last 10 years there has been a shift in how we view the operations of an enter-
ise. Rather than view the enterprise as being hierarchical in both structure and control, a
stributed view where enterprise units communicate and cooperate in both problem solv-
g and action has evolved [Fox 81]. To achieve integration it is necessary that units of the
iterprise, be they human or machine based, be able to understand each other. Therefore
e requirement exists for a representation in which enterprise knowledge can be
tpressed. Minimally the representation provides a language for communicating among
1its, such as design, manufacturing, marketing, field service, etc. Maximally the repre-
‘mtation provides a means for storing knowledge and employing it within the enterprise,
ich as in computer-aided design, production control, etc.

he problem that we face today, is that the legacy systems to support enterprise functions
ere independently created, consequently they do not share the same representations. This
is led to different representations of the same enterprise knowledge and the inability of
ese functions to share knowledge. We call this the Correspondence Problem: What is the
lationship among concepts that denote the same thing but have different names? It is
ymmon for enterprises, especially those that are geographically dispersed to use different
imes to refer to the same concept. No matter how rationale the idea of renaming them is,
ganisational barriers impede it.

:condly, these representations lack an adequate specification of what the terminology
eans {aka semantics). This leads to inconsistent interpretations and uses of the knowl-

221

edge. Lastly, the cost of designing, building and maintaining a data model of enterprise
knowledge is large. Each tends to be unique to the enterprise; terminology is enterprise
specific.

As a solution to this problem, there has been an increasing interest in Generic Enterprise
Models (GEM). A GEM is a data dictionary that defines the classes of entities {or objects)
that are generic across a type of enterprise, such as manufacturing, and can be employed
(aka instantiation) in defining a specific enterprise. It is believed that if one starts with a
GEM, the time and cost of producing an instantiation of the model will be reduced signifi-
cantly. Though much work has gone into the creation of GEMs, few have reflected upon
the issues that arise in their creation and use. In the following, we explore a number of
issues surrounding the creation of a Generic Enterprise Model.

2.0 Enterprise Modelling Issues

2.1 Is there such a thing as a generic enterprise model?

Yes! There exists significant amounts of knowledge that is generic across many applica-
tions. The identification and formalization of generic knowledge has come to be called
“Ontological Engineering” [Gruber 93]. An ontology is a formal description of entities
and their properties, relationships, constraints, behaviours. Entities are classified into one

or more taxonomies.

In trying to construct an ontology that spans enterprise knowledge, the first question is
where to start. Brachman provides a stratification of representations [Brachman 79]:

Implementation: physical representation of data
Logical: logical interpretation of the physical representation.

Conceptual (aka Epistemological): primitives for representing the components
of a concept: properties, structure, relations, generalization, association.

Generic: domain independent concepts such as time, causality, action, space, etc.)

Application (aka Lexical): primitives are application dependent and may change
meaning as knowledge grows.

The following diagram depicts the last three levels with examples of the type of knowl-
edge that is represented at each. Note that the application level is re-labeled the enterprise
level. Secondly, the division between levels is somewhat artificial in that each level may
be further stratified. Determining what concepts should be in the generic level versus the
enterprise level is based on their generality.

Py

P| .
l D Specific
C i 2
[cr] &S 4
M
Enterprise Level -
(o]
Marketing | Sales Engineerind Manufact | S
-uring A
Distribution} Field Servicg Finance Admin
| s
[Al !
[Fl |t
ol g H
Generic Level X{ N
Activity Time Causality Space
Resources | Authority Constraints} Organiza-
tion
| X
[K| &
] L
| 5 0
Conceptual Level o g
: & Y
Concept Property Role Structure C
R General
Inheritance{ Relations Meta Manifesta
~tion

The conceptual level provides the building blocks for defining concepts. The basic unit of
representation is an object for which is defined:

+Properties: Cardinality, Type

«Relationships: Range restrictions

«Generalization/Specialization hierarchies

«Classification: Prototypical descriptions vs. instances
The conceptual level received much attention in the 1970s, with the development of
knowledge representation languages such as FRL [Roberts & Goldstein 77], KLONE

[Brachman 77], KRL [Bobrow & Winograd 77], NETL [Fahlman 77], and SRL [Fox 79]..
Many of the concepts investigated in these system have formed the basis of semantic data

2.

modelling in databases. More recently, the conceptual level has been formalized as what-
now called “terminological logic” [Brachman & Schmolze 85].

The generic level provides ontologies for concepts common across many domains.
Generic level representations include concepts such as:

*Time [Allen 83),

+Causality [Rieger & Grinberg 77), [Bobrow 85},

= Activity [Sathi et al. 85],

«Resources [Fadel 93], and

«Constraints [Fox 83] [Davis 87].
Consider the representation of time. Time is represented by points, periods and relations
A time-point lies within an interval {<tmin, tmax> | tmin < tmax, tmin, tmax € N}. A
time-period is bounded by a start and end time-point {<TP1, TP2> | tmin] < tmax2, TP
TP2 € TP}. We use Allen’s [83] temporal relations to describe the relationships betweer

time-points and/or time-periods. We present the thirteen possible temporal relationships
and refer to Allen’s paper for the transitivity table of these temporal relations.

Symbol Symbol
for for
Relation Symbol Inverse Pictorial Example Relation Symbel Inverse Pictorial Example
X over- o oi X dur- d di
laps Y ingY

X same = = X starts s s

Y Y

X m mi X ends e ei
meets Y Y

X < > 55
before Y

One of the largest efforts underway to create an integrated set of generic representations i
the CYC project at MCC [Lenat & Guha 90).

The enterprise level provides a data dictionary of concepts (aka reference model) that ar
common across various enterprises, such a products, materials, personnel, orders, depart
ments, etc. At the enterprise level, various efforts exist in standardizing representations. Fo
example, since the 1960’s IBM’s COPIC’s Manufacturing Resource Planning (MRP) sys
tem has had a shared enterprise model. In fact, any MRP product contains an enterpris
model. Recently, several efforts have been underway to create more comprehensive enter

prise model, including:

CAMI: A US-based non-profit group of industrial organizations for creating man-
ufacturing software and modelling standards.

ICAM: A project run by the Materials Lab. of the US Air Force [Davis et al. 83]
[Martin et al. 83] [Martin & Smith 83] [Smith et al. 83]. '

IWI: A reference model developed at the Institut fur Wirtschaftsinformatik, Uni-
versitat des Saarlandes, Germany [Scheer 89].

he following are the basic relations and objects in their range defined for the “part” con-
;pt in the ICAM model from the design perspective [Martin et al. 83] {Martin & Smith

i1
«IS CHANGED BY: Part Change (105) (also shown as *'is modified by”)

+APPEARS AS: Next Assembly usage item (119) (also shown as “is referenced
as”).

+HAS: Replacement part (143).
+HAS SUBTYPE (IS): Parts list item (118), Replacement part (143).

IS USED AS: Next Assembly Usage (40), Advance material notice item part
(144), Configuration list item (170).

+IS TOTALLY DEFINED BY: Drawing (1).

«IS LISTED BY (LISTS): Configuration list (84).

+1S USED IN: Effectivity (125).

«IS FRABRICATED FROM: Authorized material (145).
1e following ar e the basic relations and objects they are linked to for a “part” from a
anufacturing perspective {Smith et al. 83]:

+HAS: N.C. Program (318), Material issue (89), Component part (299), Alterna-
tive part (301), Part/process specification use (255), Material receipt (87), Work
package (380), Part tool requirement (340), Part requirement for material (397),
Standard routing use (254), Image part (300), Part drawing (181).

+IS ASSIGNED TO (HAS ASSIGNED TO IT): Index (351).

IS DEFINED BY (DEFINES): Released engineering drawing (12).
+IS SUBJECT OF: Quote request (90), Supplier quote (91).

+IS TRANSPORTED BY: Approved part carrier (180).

« IS RECEIVED AS: Supplier de! lot (309).

+APPEARS AS: Part lot (93), Ordered part (188), Serialized part instance (147),
Scheduled part (409), Requested purchase part (175).

«CONFORMS TO: Part specification (120).

225

IS INVERSE: Component part (299), Alternate part (301), Section (363), End
item (5), Configured item (367), Image part (300).

«IS USED AS: Component part callout (230), Process plan material callout (74).
«IS SUPPLIED BY: Approved part source (177).

«MANUFACTURE IS DESCRIBED BY: Process plan (415).

«SATIFIES: End item requirement for part (227).

«1S REQUESTED BY: Manufacturing request (88).

«IS STORED AT: Stock location use for part (227).

1S SPECIFIED BY: BOM ltem (68).

This is only the tip of the iceberg. If one were to develop a complete GEM at the enterprise
level, its sheer size would overwhelm the abilities of any database manager or knowledge
engineer. There is a point at which further elaboration tends to obfuscate rather than en-
hance the model. On the other hand, if there is not enough detail, then its value may be lim-
ited. We will revisit this issue in section 2.7.

2.2 Can the terminology be precisely defined?

"It is certainly praiseworthy to try to make clear to oneself as far as
possible the sense one associates with a word. But here we must not
forget that not everything can be defined" Gottlob Frege.

Prior to the advent of GEMs, an application’s data model was defined in a database sys-
tem’s data dictionary. The creation of the data dictionary was and continues to be the
responsibility of the database administrator who works with the end users. In the worst
case, definitions for each of the objects, attributes and relations in the dictionary are not
available, and their interpretation can only be derived by looking at how an application
used the information. Better managed data dictionaries include definitions, usually written
in a natural language such as english. Due to the inherent ambiguities of natural language,
even these definitions may be interpreted differently by each user. If we are to create truly
sharable GEMs, we need the ability to precisely state the meaning of each object, attribute
and relation.

Precise definitions can be constructed. Through the use of logic, we can define more pre-
cisely the meaning of each object, attribute and relation as needed. Definitions may be
hierarchical and circular. Hierarchical in the sense that enterprise level concept are defined
in terms of generic level concepts. Circular in that enterprise level concepts are defined in
terms of other concepts at the same level, and vice versa! Many, if not most, definitions
can be represented using first order logic. Some definitions may require high order lan-
guages, but it is probably the case most things can exist in a first order language.

Consider the temporal relations introduced in the previous section. The following are defi-
nitions of two variations of the before relation:

Pttt Ldes B Fren e aTIAInd TE tmind o~ tmaav?) FEONH

TimePoint1 is strictly before TimePoint2 IF tmax1 < tmin2 (EQ2)

Tmin1 and tmax] bound the interval in which time point I is located. The first axiom
states that for TimePoint! to be possibly before TimePoint2, there must exist at least one
point in time in TimePoint1’s associated interval that is less than some point in time in
TimePoint2's associated interval. This is true iff tmin] < tmax2,

2.3 Does all knowledge need to be explicit?

The usefulness of an instantiated GEM is determined by the queries it can answer. Con-
sider a model with an SQL interface. Knowledge is explicitly represented if it can be
retrieved using a simple SELECT. That is, the knowledge is represented explicitly and
only needs to be retrieved. Knowledge is represented implicitly if it requires a more com-
plex query to retrieve it. For example, it may require one or more JOINs combined with
SELECTs. This is equivalent to performing deduction. For example, if the model contains
a ‘works-for’ relation and it is explicitly represented that Joe ‘works-for’ Fred, and that
Fred ‘works-for’ John, then the obvious deduction that Joe ‘works-for’ John (indirectly) is
not represented explicitly in the model but must be deduced.

We distinguish between a model that includes axioms that support deduction, versus a
model without axioms where deductions are specified by the query. In the former case, the
model would be able to deduce that Joe works-for John in response to a query asking who
does Joe work for. In the latter case, the user would have to specify a complex query
which would include as many joins as necessary to travel along the works-for relation.
Since the user does not know at the outset the depth of the works-for path, they may not
get the information they were looking for. We call a model which includes axioms an Axi-
omatised Enterprise Model (AEM). An AEM that includes a deduction engine (i.e., theo-
rem prover) has been called either a knowledge base or a deductive database. We will refer
to it as a Deductive Enterprise Model (DEM). The lack of a deductive capability forces
users to spend significant resources on programming each new report or function that is

required.

So far we have discussed the deductive capability of a model without reference to the
nature of the axioms or rules used in performing the deductions. We say a DEM possesses
Common-Sense (DEMcg) if its axioms define the meaning of the terms in the ontology.
By Common-Sense, we mean that the axioms enable the model to deduce answers 1o ques-
tions that one would normally assume can be answered if one has a “commons-sense”

understanding of the enterprise.

In summary, the design, creation and maintenance of software is fast becoming the domi-
nant cost of automation.A significant portion of these costs is for software that provides
answers deduced from the contents of the enterprise model. Many of these questions could
be answered automatically if the enterprise model had the “common sense” to answer

them!

2.4 Need there be a single, shared enterprise model?

Not all knowledge has to be represented generically, only that which is shared among
of the enterprise, and that too may be specialized. Units of an enterprise evolve repres
tions and procedures that are tailored to their roles and goals. The tailoring is usually
essary to achieve higher degrees of productivity and quality. Consequently, formalize
models maximally affect what is communicated among enterprise units, and minimal
affect how information/knowledge is represented within units.

Manufacturing (
.

/
+
\

. -~

(U
-

e

Engineering

e

-
N
Vs
,,,.MA,—»‘/

8 Marketing

Even the interchanges among units in the enterprise neither require nor desire a singl
integrated model as a basis of communication. As shown in the figure above, there me
one language using for communication between engineering and manufacturing, and
ferent one for engineering and marketing. But all units will share some core language
Though the artificiality of the enterprise implies the possibility of an integrated mode
reality tends to differ. Integrated models are really a lattice of models that are special
to the needs of subsets of enterprise units.

2.5 How can we determine which is a better enterprise model?

Given the many efforts seeking to create a GEM, there has never been a well defined s
criteria with which these efforts could be evaluated! In fact, there is no objective mear
which one can compare one GEM with another. Following are what we believe shou.
the characteristics of a representation:

Generality: To what degree is the representation shared between diverse activities such as design
troubleshooting, or even design and marketing?

Competence: How well does it support problem solving? That is, what questions can the represen
answer or what tasks can it support?

8

Efficiency: Space and inférence. Does the representation support efficient reasoning, or does it require
some type of transformation?

Perspicuity: Is the representation easily understood by the users? Does the representation “document
itself?”

Transformability: Can the representation be easily transformed into another more appropriate for a par-
ticular decision problem?

Extensibility: Is there a core set of ontological primitives that are partitionable or do they overlap in
denotation? Can the representation be extended to encompass new concepts?

Granularity: Does the representation support reasoning at various levels of abstraction and detail?

Scalability: Does the representation scale to support large applications?

ese criteria bring to light a number of important issues and risks. For any set of func-
ns, how can we determine if the integrating model is functionally complete? A model is
ictionally complete if it contains the types of information necessary for a function to
form its task. Are functionally complete models specifiable? One way of specifying a
«del’s functional requirements is as a set of questions that the model must be able to
iwer. We call this the competency of a model.

other problem is where the representation ends and inference begins? Consider the
npetence criterion. The obvious way to demonstrate competence is to define a set of
:stions that can be answered by the representation. If no inference capability is to be
umed, then question answering is strictly reducible to “looking up” an answer that is
resented explicitly. In contrast, Artificial Intelligence representations have assumed at
st inheritance as a deduction mechanism. In defining a shared representation, a key
:stion then becomes: should we be restricted to just an terminology? Should the termi-
ogy assume an inheritance mechanism at the conceptual level, or some type of theorem
wing capability as provided, say, in a logic programming language with axioms
tricted to Horne clauses (i.e., Prolog)? What is the deductive capability that is to be
umed by a reusable representation?

: efficiency criterion is also problematic. Experience has demonstrated that there is

re than one way to represent the same knowledge, and each representation does not

re the same complexity when answering a specific class of questions. Consequently, we

inot assume that a representation will partition the space of concepts, but there will

st overlapping representations that are more efficient in answering certain questions.
thermore, the deductive capability provided with the representation affects the store vs.
npute trade-off. If the deduction mechanisms are taken advantage of, certain concepts
be computed on demand rather than stored explicitly.

: ability to validate a proposed representation is critical to this effort. The question is:

v are the criteria described above operationalised? The competence of a representation
oncerned with the span of questions that it can answer. We propose that for each cate-
y of knowledge, a set of questions be defined that the representation can answer. Given
mceptual level representation and an accompanying theorem prover (perhaps Prolog),
stions can be posed in the form of queries to be answered by the theorem prover. Given

229.

that a theorem prover is the deduction mechanism used to answer questions, the efficiency
of a representation can be defined by the number of LIPS (Logical Inferences Per Second)
required to answer a query. Validating generality is more problematic. This can be deter-
mined only by a representation’s consistent use in a variety of applications. Obviously, at
the generic level we strive for wide use across many distinct applications, whereas at the
application level, we are striving for wide use within an application.

2.6 Can an enterprise model be consistent?

The assumption that enterprise knowledge can be globally consistent is ridiculous. By def-
inition, an information system based on a distributed architecture will abound in inconsis-

" tent information. Tailoring and local context leads to ambiguities and inconsistencies in

the content of what is stored and communicated. How to manage inconsistency so that it
does not adversely affect operations is the problem that has to be solved.

One way of approaching this is to identify subsets of knowledge that must remain consis-
tent among a set of “‘consenting” agents in the information network. Changes to this
knowledge must be managed so that inconsistencies do not arise.

2.7 Can an enterprise model be created and kept current?

Enterprises are dynamic and undergo continuous change. Consequently, a process for
managing the evolution of the model is required. Since the competence of a model is spec-
ified by the activities that use it, it follows that model management is an activity-based
process. The information requirements of activities determine data spheres and their con-
tents. A data sphere is a set of information that is shared by functionally-related agents.
Groupings of activities lead to data spheres whose model is a point in the model lattice.

Since enterprise activities are the result of enterprise design, model specification is the
outcome of enterprise design. Without an adequate process - and possibly a theory - of
enterprise design, the construction of an integrated model will be either expensive or
impossible. Emerging methods for enterprise analysis and possibly design include:

*GRALI: Universite de Bordeaux.

»CIM-OSA: A reference model being developed by the ACIME group of ESPRIT
in Europe [Esprit 90].

«PERA: Purdue Enterprise Reference Architecture [Williams 91].

2.8 Will the organization accept an enterprise-wide model?

There is a belief that an integrated model cannot be superimposed upon an enterprise.
Enterprises are both artificial and natural. Artificial in that formal structures and systems
exist within the enterprise by design. Natural in that systems evolve in response to the
inadequacies of the design due to changing market conditions, technologies, knowledge,
etc. The artificiality of an enterprise admits the specification and utilization of an inte-
grated model. Its adoption is imposed by the enterprise's formal structures.

3.0 TOVE: TOronto Virtual Enterprise

In the Enterprise Integration Laboratory at the University of Toronto, we have been inves-
tigating the creation of a Common-Sense Deductive Enterprise Model (DEMcg). The goal
of the TOVE project is to create a generic enterprise model that has the following charac-
teristics: 1) provides a shared terminology for the enterprise that each agent can jointly
understand and use, 2) defines the meaning of each term (aka semantics) in a precise and
as unambiguous manner as possible, 3) implements the semantics in a set of axioms that
will enable TOVE to automatically deduce the answer to many “‘common sense” questions
about the enterprise, and 4) defines a symbology for depicting a term or the concept con-

structed thereof in a graphical context.

We approach these goals by identifying the different types of knowledge we wish to repre-
sent at the generic level. Generic concepts include representations of Time [Allen 83],
Causality [Rieger & Grinberg 77] [Bobrow 85], Activity [Sathi et al. 85}, and Constraints
[Fox 83][Davis 87]. For each type of knowledge, we first define the competency require-
ments. We then define an ontology that will support the specified competency. We
approach the second and third goals by defining a set of axioms (aka rules) that define
common-sense meanings for the ontology, in first order logic and implemented in Prolog.

TOVE is not only an ontology but a testbed. TOVE has been used to define a virtual com-
pany whose purpose is to provide a testbed for rescarch into enterprise integration. TOVE
is implemented in C++ using the ROCK @+[TM] knowledge representation tool from
Carnegie Group. Axiom are implemented in Quintus Prolog which is integrated with
ROCK. TOVE operates “virtually” by means of knowledge-based simulation [Fox et al,

891.

4.0 Conclusion

Computerization of enterprises continues unabated. The amount of software is increasing
while its cost is not decreasing. The availability of a generic, common-sense enterprise
model is necessary if we are to reign in costs. But in order to construct useful Generic
Enterprise Models there are a number of issues that have to be addressed. Foremost is the

transition of the efforts from poorly principled data modelling into principled engineering.

The TOVE project is our attempt at creating such a model. It’s goals are 1) to create a
shared terminology (aka ontology) of the enterprise that each agent can jointly understand
and use, 2) define the meaning of each term (aka semantics), 3) implement the semantics
as a set of axioms that will enable TOVE to automatically deduce the answer to many
“common sense” questions about the enterprise, and 4) define a symbology for depicting
terms and concepts in a graphical context. We are approaching these goals by defining a
three level representation: application, generic and conceptual.

J.U AcCKnowicagments

This res‘earch is supported in part by an NSERC Industrial Research Chair in Enterprise
Integration, Carnegie Group Inc., Digital Equipment Corp., Micro Electronics and Com-

puter Research Corp.,

6.0 References
[Allen 83]

[Bobrow 85]

Quintus Corp., and Spar Aerospace Ltd.

Allen, I.E.
Maintaining Knowledge about Temporal Intervals.
Communications of the ACM. 26(11):832-843, 1983.

Bobrow, D.G.
Qualitative Reasoning About Physical Systems. MIT Press, 1985.

[Bobrow & Winograd 77]

[Brachman 77]

Bobrow, D., and Winograd, T.
KRL: Knowledge Representation Language.
Cognitive Science. 1(1), 1977.

Brachman, R.J.
A Structural Paradigm for Representing Knowledge.
PhD thesis, Harvard University, 1977.

[Brachman & Schmolze 85]

[Davis 87]

[Davis et al. 83)

[Esprit 90]

Brachman, R.J., and Schmolze, J.G.
An Overview of the KL-ONE Knowledge Representation System:
Cognitive Science. 9(2), 1985.

Davis, E.
Constraint Propagation with Interval Labels.
Artificial Intelligence. 3, 281-331, 1987.

Davis, B.R., Smith, S., Davies, M., and St. John, W.

Integrated Computer-aided Manufacturing (ICAM) Architectun
Part III/Volume II: Composite Function Model of "Desig
Product” (DESO0).

Technical Report AFWAL-TR-82-4063 Volume III, Material
Laboratory, Air Force Wright Aeronautical Laboratories, Ai
Force Systems Command, Wright-Patterson Air Force Base

Ohio 45433, 1983.

ESPRIT-AMICE.

CIM-OSA - A Vendor Independent CIM Architecture.
Proceedings of CINCOM 90, pages 177-196.

National Institute for Standards and Technology, 1990.

32

[Falhman 77]

[Fadel 93]

[Fox 79]

[Fox 81]

[Fox 83]

Fox et al. 89]

[Gruber 93]

‘Hansen 91}

- Fahlman, S.E.

A System for Representing and Using Real-World Knowledge.
PhD thesis, Massachusetts Institute of Technology, 1977.

Fadel, E
A Micro-theory for Resources
Technical Report, Enterprise Integration Laboratory, Department of

Industrial Engineering, University of Toronto, to appear.

Fox, M.S.
On Inheritance in Knowledge Representation.
Proceedings of the International Joint Conference on Artificial

Intelligence.
Morgan Kaufmann Pub. C0.95 First St., Los Altos, CA 94022, 1979.

Fox, M.S. An

Organizational View of Distributed Systems.

IEEE Transactions on Systems, Man, and Cybernetics. SMC-
11(1):70-80, 1981.

Fox, M.S.

Constraint-Directed Search: A Case Study of Job-Shop Scheduling.

PhD thesis, Carnegie Mellon University, 1983. CMU-RI-TR-85-7,
Intelligent Systems Laboratory, The Robotics Institute,
Pittsburgh.

Fox, M.S., Reddy, Y.V, Husain, N., McRoberts, M.

Knowledge Based Simulation: An Artificial Intelligence Approach
to System Modeling and Automating the Simulation Life Cycle.

Artificial Intelligence, Simulation and Modeling. In Widman, L.E.,
John Wiley & Sons, 1989.

Gruber, T.R.
Toward Principles for the Design of Ontologies Used for

Knowledge Sharing.
Technical Report, Knowledge Systems Laboratory, Stanford
University, 1993.

Hansen, W.C.

The Integrated Enterprise. In Foundations of World-Class
Manufacturing Systems: Symposium Papers.

National Academy of Engineering, 2101 Constitution Ave, NW.,
Washington DC, 1991.

233 -

[Lenat & Guha 90] Lenat, D., and Guha, R.V.
Building Large Knowledge Based Systems: Representation and
Inference in the CYC Project.
Addison Wesley Pub. Co., 1990.

[Martin & Smith 83]Martin, C., and Smith, S.

Integrated Computer-aided Manufacturing (ICAM) Architecture
Part I/Volume IV: Composite Information Model of “Design
Product” (DES1).

Technical Report AFWAL-TR-82-4063 Volume IV, Materials
Laboratory, Air Force Wright Aeronautical Laboratories, Air
Force Systems Command, Wright-Patterson Air Force Base, Ohio
45433, 1983,

[Martinetal. 83] Martin, C., Nowlin, A., St. John, W., Smith, S., Ruegsegger, T., and

Small, A.

Integrated Computer-aided Manufacturing (ICAM) Architecture
Part III/Volume VI: Composite Information Model of
"Manufacture Product" (MFG1).

Technical Report AFWAL-TR-82-4063 Voluem VI, Materials
Laboratory, Air Force Wright Aeronautical Laboratories, Air
Force Systems Command, Wright-Patterson Air Force Base,
Ohio 45433, 1983.

[Nageletal. 91] Nagel, R.N. etal
21st Century Manufacturing Enterprise Strategy: An Industry Led
View.
Technical Report, lacocca Institute, Lehigh University, Bethlehem
PA, 1991.

[Rieger & Grinberg 77]
Rieger, C., and Grinberg, M.
The Causal Representation and Simulation of Physical Mechanisms.
Technical Report TR-495, Dept. of Computer Science, University of
Maryland, 1977.

[Roberts & Goldstein 77]
Roberts, R.B., and Goldstein, I.P.
The FRL Manual.
Technical Report MIT Al Lab Memo 409, Massachusetts Institute of

Technology, 1977.

[Satni et at. 3]

[Scheer 89]

{Smith et al. 83]

[Williams 91]

>aint, A., FOX, IVL.D., and UTeennerg, M.

Representation of Activity Knowledge for Project Management.

IEEE Transactions on Pattern Analysis and Machine Intelligence.
PAMI-7(5):531-552, September, 1985.

Scheer, A-W.
Enterprise-Wide Data Modelling: Information Systems in Industry.
Springer-Verlag, 1989.

Smith, S., Ruegsegger, T., and St. John, W.

Integrated Computer-aided Manufacturing (ICAM) Architecture
Part IIl/Volume V: Composite Function Model of “Muanufacture
Product” (MFGO).

Technical Report AFWAL-TR-82-4063 Volume V, Materials
Laboratory, Air Force Wright Aeronautical Laboratories, Air
Force Systems Command, Wright-Patterson Air Force Base, Ohio
45433, 1983.

Williams, T.J., and the Members, Industry-Purdue University
Consortium for CIM.

The PURDUE Enterprise Reference Architecture.

Technical Report Number 154, Purdue Laboratory for Applied
Industrial Control, Prudue University, West Lafayette, IN 47907,
1991.

IV. Interaction and Collaborative Work

