
A COMMON-SENSE MODEL OF THE ENTERPRISE

Mark S. Fox, John F. Chionglo, Fadi G. Fadel

Department of Industrial Engineering,
University of Toronto

4 Taddle Creek Road, Toronto, Ontario M5S 1A4 Canada
tel: +1-416-978-6823, fax: +1-416-971-1373, internet: msf@ie.utoronto.ca

ABSTRACT

There is a paradigm shift towards a distributed and integrated enter-
prise. Currently, computer systems that support enterprise functions
were created independently. This hampers enterprise integration
Therefore, there is a need for a computer based data model which
provides a shared and well defined terminology of an enterprise,
and has the capability to deductively answer common sense ques-
tions.

This paper discusses how TOVE tackles these needs by defining a
framework for modeling generic level representations such as activ-
ities, time, and resources. Since there has never been a well-defined
set of criteria to evaluate such models, this paper also introduces a
set of evaluation criteria which may be used to evaluate modelling
efforts.

INTRODUCTION

Over the last 10 years there has been a shift in how we view the
operations of an enterprise. Rather than view it as being hierarchi-
cal in both structure and control, a distributed view where organiza-
tional units communicate and cooperate in both problem solving
and action has evolved [7] [8]. Enterprise Integration is concerned
with how to improve the performance of distributed organizations
and markets. It focuses on the communication of information and
the coordination and optimization of enterprise decisions and pro-
cesses in order to achieve higher levels of productivity, flexibility
and quality. To achieve integration it is necessary that units of the
enterprise, be they human or machine based, be able to understand
each other. Therefore the requirement exists for a language in
which enterprise knowledge can be expressed. Minimally the lan-
guage provides a means of communicating among units, such as
design, manufacturing, marketing, and field service. Maximally the
language provides a means of representing knowledge for use in the
enterprise, such as in computer-aided design, and production con-
trol.

Currently, computer systems that support enterprise functions were
created independently. This leads to three problems. Firstly, the
functions do not share the same representations (i.e. different repre-
sentations of the same enterprise knowledge); hence, they are
unable to share knowledge. Secondly, the representations were
defined without an adequate specification of what the terminology
means (a.k.a. semantics); hence, the interpretations and uses of the
knowledge are inconsistent. Thirdly, the representations are pas-
sive. They do not have the capability to automatically deduce the
obvious about what it is representing. For example, if the represen-
tation contains a `works-for' relation and it is explicitly represented
that Joe `works-for' Fred, and that Fred `works-for' John, then the
obvious deduction that Joe `works-for' John (indirectly) cannot be
made within the representation system. The lack of a `common-
sense' deductive capability forces users to spend significant
resources on programming each new report or function that is
required.

The goal of the TOVE (TOronto Virtual Enterprise) project is to
create a data model that: 1) provides a shared terminology for the
enterprise that each agent can jointly understand and use, 2) defines
the meaning of each term (a.k.a. semantics) in a precise and as
unambiguous manner as possible, 3) implements the semantics in a
set of axioms that will enable TOVE to automatically deduce the
answer to many “common sense” questions about the enterprise,
and 4) defines a symbology for depicting a term or a concept in a
graphical context

 In the following sections, we introduce a set of evaluation criteria
by which representations may be measured. Finally, we describe
our efforts to date in creating a more formal and computable termi-
nology and semantics of activities and states, time, and resources.

EVALUATION CRITERIA

Though there are a number of efforts underway to create enterprise
models, it is not clear how to evaluate these efforts. Consider the
ICAM [10] reference model. Like the IWI [13] model, it is an appli-

Appeared in: Proceedings of the IIE Industrial Engineering Research Conference, 1993, IIE Press.

Contact: msf@eil.utoronto.ca

cation level data model whose entities, properties and relationships
are specific to manufacturing. But there are problems. First, the
meanings of the relations are ambiguous and at best provided in a
descriptive form. Second, there is no way to know whether this is
the “right” way of representing this information. Third, this is only
the tip of the iceberg, if one were to develop a complete model for
an enterprise, its sheer size would be beyond the abilities of any
database manager or knowledge engineer to understand and use
effectively. All of these models fall short of our goals.

Though all of these efforts seek to create a sharable representation
of enterprise knowledge, there has never been a well defined set of
criteria that these efforts should satisfy. Following are what we
believe should be the characteristics of a representation:

Generality: To what degree is the representation shared between
diverse activities such as design and troubleshooting, or even
design and marketing?

Competence: How well does it support problem solving? That is,
what questions can the representation answer or what tasks can it
support?

Efficiency: Space and inference. Does the representation support
efficient reasoning, or does it require some type of transformation?

Perspicuity: Is the representation easily understood by the users?
Does the representation “document itself?”

Transformability: Can the representation be easily transformed into
another more appropriate for a particular decision problem?

Extensibility: Is there a core set of ontological primitives that can
be partitioned or do they overlap in denotation? Can the representa-
tion be extended to encompass new concepts?

Granularity: Does the representation support reasoning at various
levels of abstraction and detail?

Scalability: Does the representation scale to support large applica-
tions?

These criteria bring to light a number of important issues and risks.
For example, where does the representation end and inference
begin? Consider the competence criterion. The obvious way to
demonstrate competence is to define a set of questions that can be
answered by the representation. If no inference capability is to be
assumed, then question answering is strictly reducible to “looking
up” an answer that is represented explicitly. In contrast, Artificial
Intelligence representations have assumed at least inheritance as a
deduction mechanism. In defining a shared representation, a key
question then becomes: should we be restricted to just an terminol-
ogy? Should the terminology assume an inheritance mechanism at
the conceptual level, or some type of theorem proving capability as
provided, say, in a logic programming language with axioms
restricted to Horne clauses (i.e., Prolog)? What is the deductive
capability that is to be assumed by a reusable representation?

The ability to validate a proposed representation is critical to this
effort. The question is: how are the criteria described above opera-
tionalized? The competence of a representation is concerned with

the span of questions that it can answer. We propose that for each
category of knowledge, a set of questions be defined that the repre-
sentation can answer. Given a conceptual level representation and
an accompanying theorem prover (perhaps Prolog), questions can
be posed in the form of queries to be answered by the theorem
prover. Given that a theorem prover is the deduction mechanism
used to answer questions, the efficiency of a representation can be
defined by the number of LIPS (Logical Inferences Per Second)
required to answer a query.

THE TOVE PROJECT

We approach the first goal by defining a generic level representa-
tion. Generic concepts include representations of Time [2], Causal-
ity [11] [3], Activity [12], and Constraints [8] [5]. The generic level
is, in turn, defined in terms of a conceptual level based on the ‘ter-
minological logic’ of KLONE [4]. Application level representa-
tions will be defined in terms of the generic level.

We approach the second and third goals by defining a set of axioms
(a.k.a. rules) that define common-sense meanings for the terminol-
ogy. By common sense, we mean that the more obvious definitions/
deductions about the entities and attributes in our ontology. What is
an obvious deduction should be determined by a subset of questions
used to determine the competence of a representation. Since there
does not exist a standard for determining the competence of a
model, we will define in English a set of questions and the axioms
used to answer them.

TOVE is not only a research project but also a testbed. TOVE has
been used to implement a virtual company whose purpose is to pro-
vide a testbed for research into enterprise integration. TOVE is
implemented in C++ using the ROCK@+[TM] knowledge repre-
sentation tool from Carnegie Group. TOVE operates “virtually” by
means of knowledge-based simulation [9].

In the following sections, we describe the terminology and axioms,
and outline the competence of the model.

Activity

Enterprises are action oriented, therefore the ability to represent
action lies at the heart of all enterprise models. The CIM-OSA
model stratifies action from the lowest level of a function, to an
enterprise activity and up to a business process, the IWI representa-
tion defines function specific actions, and the Purdue PERA model
has a two level representation composed of a task at a lower level
and a function at the upper level. In TOVE, a single entity called an
activity spans all of the above.

In TOVE, action is represented by the combination of an activity
and its corresponding enabling and caused states. An activity is the
basic transformational action primitive with which processes and
operations can be represented. An enabling state defines what has to
be true of the world in order for the activity to be performed. A
caused state defines what will be true of the world once the activity
has been completed.

Figure 1. Activity-State Model

Status: The status of an activity is reflected in an attribute called
status. We define the domain of an activity’s status as a set of lin-
guistic constants. dormant: the activity is idle and has never been
executing before. enabled: the activity is executing. suspended: the
activity was executing and has been forced to an idle state. reEn-
abled: the activity is executing again. completed: the activity has
finished.

State

Figure 2. Activity-State Cluster

An activity along with its enabling and caused states is called an
activity cluster. The state tree linked by an enables relation to an
activity specifies what has to be true in order for the activity to be
performed. The state tree linked to an activity by a causes relation
defines what will be true of the world once the activity has been
completed (see Figure 2.)

Figure 3. State Taxonomy

There are two types of states: terminal and non-terminal.

Terminal States: Use signifies that a resource is to be used, but
not consumed, by the activity, and will be released once the activity
is completed. Consume signifies that a resource is to be used/con-
sumed by the activity and will not exist once the activity is com-
pleted. Release signifies that a resource, which has been designated
as being used is now available for use/consumption elsewhere.
Produce signifies that a resource, that did not exist prior to the per-
formance of the activity, has been created by the activity. Predicate
represents an arbitrary predicate that evaluates to either true or
false.

ActivityEnabling State Caused State

Enables Causes

activity

state

consume
plug

use
inject_mold

produce
plug_on_wire

es_fabricate
plug_on_wire

pro_fabricate
plug_on_wire

enables causes

conjuncts conjuncts

consume
wire

release
inject_mold

fabricate
plug_on_wire

State
Terminal

Use

Consume

Release

Produce Predicate Conjunct Disjunct

Exclusive

Not

Composite
Produce

State
Non-Terminal

State

Non-terminal states: (allows for the boolean combination of
states). Conjunctive/Disjunctive specifies that all substates / at least
one substate must be satisfied. Exclusive specifies that only one
substate must be satisfied. Not specifies that the substate must not
be satisfied. Composite Produce signifies that a resource, that did
not exist prior to the performance of the activity, has been created
by the activity. This resource includes other materials that are only
being used for a limited time and will be released by another activ-
ity.

Except for the composite produce, each of these states can be fur-
ther classified as being discrete or continuous.

Status: The status of a state is reflected in an attribute called sta-
tus. We define the domain of a state’s status as a set of linguistic
constants. For example, the domain for discrete_consumption is:
possible/not_possible: a unit of the resource that the state consumes
is available/not available at the time required. committed: a unit of
the resource that the state consumes has been reserved for con-
sumption. enabled: a unit of the resource that the state consumes is
being consumed. completed: unit of the resource that the state con-
sumes had been consumed and is no longer needed.

Activity Abstraction

Activity clusters may be aggregated to form multiple levels of
abstraction. “An activity is elaborated to an aggregate activity (an
activity network), which then has activities” [12]. These activities
are subactivities of the aggregate activity (see Figure 4.). The
enabling and caused states are omitted from this diagram but they
do exist. Just as activities can be abstracted, states can be abstracted
in a similar manner.

Figure 4. Activity Abstraction

Time

Time is represented by points, periods and relations. A time-point
lies within an interval. A time-period is bounded by a start and end
time-point. We use Allen’s temporal relations [1] to describe the
relationships between time-points and/or time-periods. We present
the thirteen possible temporal relationships and refer to Allen’s
paper for the transitivity table of these temporal relations.

The temporal relation between a terminal state and an activity is
specified by the user. The temporal relation between a non-terminal
state and an activity may be automatically deduced using Allen’s
transitivity table for the thirteen temporal relations.

assemble
wire_switch

assemble_ws
aggregation

assemble2
wire_switch

fabricate
plug_on_wire

initial_activity final_activity

has_subactivity

next_subactivity

has_elaboration

Manifestations: A manifestation is a time-dependent descrip-
tion of an entity. Every instance of a state or activity may have one
or more manifestations with an associated time-period over which
the manifestation is true.

Resources

We view that “being a resource” is not innate property of an object,
but is a property that is derived from the role an entity plays with
respect to an activity. Accordingly, resources could be: Machines
such as milling machines, computers etc., Electricity consumed by
an activity, Materials such as raw material, semi finished products
etc., Tools/Equipment such as fixtures, cranes, chairs etc., Capital
needed to perform an activity, Human skill when needed to perform
an activity, and Floor space that is used by an activity. Following
are some important properties of resources.

Divisibility: A resource is said to be temporal-divisible if the use of
a resource over time does not affect the future usability of the
resource. For example, Multiplex lines are temporally divisible in
the context of a communication activity. A resource is physically
divisible if each division of the resource can be used or consumed
by an activity. So, if the activity is to ‘sit_on’ a wooden chair,
accordingly the chair can not be considered physically divisible.
While, on the other hand, if the activity is to ‘fuel_a_fire’, then the
wooden chair is considered physically divisible.

Quantity: A resource point specifies a resource’s quantity at a spe-
cific time point. For example, there exists a resource point, for
resource ‘plug’ at time point ‘90’, with quantity of ‘100’ units. A
resource point can be extended to differentiate quantities at differ-
ent locations by specifying that the resource point of the resource
‘plug’ is ‘125’ at time point ‘90’ in location ‘s2’.

Component/Structured: ‘Component of’ specifies a resource as
being a part of another resource implying that a resource consists of
one or more sub-resources (i.e sub components). component_of
(wire, plug_on_wire) specifies that ‘wire’ resource is a component
of the ‘plug_on_wire’ resource. A resource is said to be physically
structured if it has at least one subcomponent [13].

Source: Furthermore, resources may be classified into [13]: manu-
factured resources that are produced by consuming at least one

Relation Time Symbol

X overlaps Y o

Inverse

oi

X same Y = =

X meets Y m mi

X meets Y < >

X during Y d di

X starts Y d di

X ends Y d di

resource, bought-in resources which are purchased resources, and
sales resources which are saleable resources. Part of the resource
taxonomy is presented in figure 6.

Figure 5. Resource Taxonomy

Semantics and Common Sense Axioms

As discussed earlier, the competence criterion focuses on how well
the model supports problem solving. We define a model’s level of
competence by a set of questions it should be able to answer either
directly or through deduction. Following are a subset of questions
we have considered in the creation of the TOVE model.

Activities and Causality. Conditions: What is the current sta-
tus of an activity? What alternatives exist? Causality: What condi-
tions have to be satisfied to perform activity? What conditions will
be satisfied when the activity has been performed? Abstraction:
What subactivities can the activity be divided into? What super-
activities is an activity part of?

Time. Time Point: When does the activity start? Time Period:
What is the start time and end time of the activity? Time Window:
What is the earliest/latest start/end time? Time Relation: Is activity
1 before/after/during activity 2?

Resource: Existence: How much of the resource exists at time
t? Consumption: Is the resource consumed by the activity? If so,
how much? Divisibility: Can the resource be divided and still be
usable? Can two or more activities use the resource at the same
time? Structure: What are the subparts of resource R? Capacity:
Can the resource be shared with other activities? Location: Where
is resource R? Commitment: What activities is the resource com-
mitted to at time t?

Part of the TOVE model is the representation of terminology defini-
tions in the form of first order logic and its implementation in Pro-
log. This provides a deductive query capable of answering many
common sense questions. The following are an English description
of some of the definitions:

• Activity 1 is before Activity 2 if the end time of Activity 1 is
less than the start time of Activity2.

• An activity can be executed if its enabling state is enabled

• A non-terminal state is enabled if the boolean combination of
its substates are enabled.

Resource

Source Type

Application typeDivisibility

Structured

Manufactured Bought_in Sales

Consumable Reusable
Physically
Divisible

Temporal
Divisibility

QuantityComponent LocationExistence

resource point

Specifies

Sub type

• A resource is physically divisible if it has at least one sub-com-
ponent.

• A resource may be consumable if it is physically divisible in its
role in an activity.

• A resource is reusable if it is temporally divisible in its role in
an activity.

CONCLUSION

The goal of the TOVE (TOronto Virtual Enterprise) project is to
create a data model that: 1) provides a shared terminology for the
enterprise that each agent can jointly understand and use, 2) defines
the meaning of each term (a.k.a. semantics) in a precise and as
unambiguous manner as possible, 3) implements the semantics in a
set of axioms that will enable TOVE to automatically deduce the
answer to many “common sense” questions about the enterprise,
and 4) defines a symbology for depicting a term or the concept con-
structed thereof in a graphical context. In this paper, we described
our terminology for the representation of activities, states, causality,
time, abstraction, manifestations, and resources. Of particular con-
cern to us, has been the lack of criteria for measuring whether one
enterprise reference model is better than another. Consequently, we
introduce a set of criteria, and briefly define the competence of our
representation in terms of questions it can answer, and the seman-
tics of our terminology in first order logic with an implementation
in Prolog. The latter provides the capability to answer common
sense questions using deduction.

ACKNOWLEDGMENTS

This research is supported in part by an NSERC Industrial Research
Chair in Enterprise Integration, Carnegie Group Inc., Digital Equip-
ment Corp., Micro Electronics and Computer Research Corp.,
Quintus Corp., and Spar Aerospace Ltd.

REFERENCES

[1] Allen, J.F. Maintaining Knowledge about Temporal Inter-

vals. Communications of the ACM. 26(11):832-843, 1983.

[2] Allen, J.F. Towards a General Theory of Action and Time.
Artificial Intelligence. 23(2):123-154, 1984.

[3] Bobrow, D.G. Qualitative Reasoning About Physical Sys-
tems. MIT Press, 1985.

[4] Brachman, R.J., and Schmolze, J.G. An Overview of the KL-
ONE Knowledge Representation Systems. Cognitive Sci-
ence. 9(2), 1985.

[5] Davis, E. Constraint Propagation with Interval Labels. Arti-
ficial Intelligence. 3281-331, 1987.

[6] ESPRIT-AMICE. CIM-OSA - A Vendor Independent CIM
Architecture. Proceedings of CINCOM 90, pages 177-196.
National Institute for Standards and Technology, 1990.

[7] Fox, M.S. An Organizational View of Distributed Systems.
IEEE Transactions on Systems, Man, and Cybernetics.
SMC-11(1):70-80, 1981.

[8] Fox, M.S. Constraint-Directed Search: A Case Study of
Job-Shop Scheduling. Ph.D. thesis, Carnegie Mellon Uni-
versity, 1983. CMU-RI-TR-85-7, Intelligent Systems Labo-
ratory, The Robotics Institute, Pittsburgh, PA.

[9] Fox, M.S., Reddy, Y.V., Husain, N., McRoberts, M. Knowl-
edge Based Simulation: An Artificial Intelligence Approach
to System Modeling and Automating the Simulation Life
Cycle. Artificial Intelligence, Simulation and Modeling. In
Widman, L.E., John Wiley & Sons, 1989.

[10] Martin, C., and Smith, S. Integrated Computer-aided Man-
ufacturing (ICAM) Architecture Part III/Volume IV: Com-
posite Information Model of “Design Product” (DES1).
Technical Report AFWAL-TR-82-4063 Volume IV, Materi-
als Laboratory, Air Force Wright Aeronautical Laboratories,
Air Force Systems Command, Wright-Patterson Air Force
Base, Ohio 45433, 1983.

[11] Rieger, C., and Grinberg, M. The Causal Representation
and Simulation of Physical Mechanisms. Technical Report
TR-495, Dept. of Computer Science, University of Mary-
land, 1977.

[12] Sathi, A., Fox, M.S., and Greenberg, M. Representation of
Activity Knowledge for Project Management. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence.
PAMI-7(5):531-552, September, 1985.

[13] Scheer, A-W. Enterprise-Wide Data Modelling: Informa-
tion Systems in Industry. Springer-Verlag, 1989.

[14] Smith, S., Ruegsegger, T., and St. John, W. Integrated Com-
puter-aided Manufacturing (ICAM) Architecture Part III/
Volume V: Composite Function Model of “Manufacture
Product” (MFG0). Technical Report AFWAL-TR-82-4063
Volume V, Materials Laboratory, Air Force Wright Aeronau-
tical Laboratories, Air Force Systems Command, Wright-
Patterson Air Force Base, Ohio 45433, 1983.

[15] Williams, T.J., and the Members, Industry-Purdue Univer-
sity Consortium for CIM. The PURDUE Enterprise Refer-
ence Architecture. Technical Report Number 154, Purdue
Laboratory for Applied Industrial Control, Purdue Univer-
sity, West Lafayette, IN 47907, 1991.

