
A GENERIC ENTERPRISE RESOURCE ONTOLOGY

Fadi George Fadel, Mark S. Fox, Michael Gruninger
Department of Industrial Engineering, University of Toronto

4 Taddle Creek Road, Toronto, Ontario M5S 1A4 Canada
tel:+1-416-978-6823 fax:+1-416-978-3453 internet: {fadel, msf, gruninger} @ie.utoronto.ca

Abstract: The complexity of planning and scheduling is

determined by the degree to which activities contend for

resources. Accordingly this requires any application to

have the ability to reason about the nature of the resource

and its availability. This paper presents a generic

enterprise resource ontology. The ontology described in

this paper is one of many that is being created by the

TOVE project in the Enterprise Integration Laboratory

at the University of Toronto.

Content Area: Enterprise Modelling, Enterprise
Integration Frameworks

Keywords: Enterprise Modelling, Enterprise Ontology

1. Introduction

The complexity of planning and scheduling is determined
by the degree to which activities contend for resources.
Accordingly this requires any application to have the
ability to reason about the nature of the resource and its
availability. This paper presents the ontology for model-
ling resources.

Most information systems that support enterprise func-
tions were created independently. This leads to three
problems. Firstly, the functions do not share the same
representations (i.e. different representations of the same
enterprise knowledge); hence, they are unable to share
knowledge. Secondly, the representations were defined
without an adequate specification of what the terminol-
ogy means (aka semantics); hence, the interpretations and
uses of the knowledge are inconsistent. Thirdly, the rep-
resentations lack any deductive capability; as a result,
users are forced to spend significant effort on program-
ming each new report or function that is required.

The key to integrating different enterprise functions, is to
have the knowledge expressed with minimum assump-
tions of the application. The main aim of an ontology is
to enable the coupling of enterprise functions and their
respective knowledge and tools. In other words, the
ontology acts as protocols for input, output and commu-
nication [Fox & Tenenbaum 90] [Gruber 91], creating
efficient coordination and communication between dif-
ferent organizational units. Accordingly, the ontology
provides a base representation for resources and a stan-
dard language of communication.

The goal of the research is to create a Resource Ontology
for a manufacturing enterprise. Manufacturing functions
such as production planning and scheduling depend on
the ability to reason about various facets of resources,
such as their amounts, capacity and availability. In order
to reason about these facets, a clear and precise represen-
tation must exist.

The objectives of the research are:

1. Define the span of the model by a set of compe-
tency questions.

2. Create an ontology for resources.

3. Implement the First Order Logic definition an con-

straints as axioms in Prolog.

The resource ontology described in this paper is one of
many that is being created by the TOVE project in the
Enterprise Integration Laboratory at the University of
Toronto. The TOVE Project includes two major under-
takings: the development of an Enterprise Ontology, and
a testbed.

The TOVE Enterprise Ontology provides a generic, reus-
able ontology for modelling enterprises. An ontology is
comprised of a reference data model composed of
objects, attributes and relations (also called the terms of

 Appeared in: Proceedings of the third IEEE Workshop on Enabling Technologies: Infrastructure for Collabo-
rative Enterprises, April 1994, Morgantown, West Virginia (WET ICE ‘94)

the ontology), and formal definitions of terms and their
constraints in First Order Logic. The TOVE ontology
currently spans knowledge of activity, state, time, causal-
ity, resources, cost and quality. The ontology’s data
model is implemented on top of C++ using the Carnegie
Group’s ROCKTM knowledge representation tool and
the axioms are implemented in QuintusTM Prolog. The
Prolog implementation provides a deductive mechanism
(aka deductive database) which can be used to answer
simple common sense questions without additional pro-
gramming.

The TOVE Testbed provides an environment for analyz-
ing enterprise ontologies. The Testbed provides a model
of an enterprise - a lamp manufacturing plant -, and tools
for browsing, visualization, simulation and deductive
queries.

2. Evaluation Criteria

Though there exists a number of efforts seeking to create
sharable representation of enterprise knowledge - CIM-
OSA [Esprit 90] , ICAM [Martin 83] , IWI [Scheer
89] , PERA [Williams 91] - little comparative analysis
has been performed. Recently, two sets of evaluation cri-
teria have been proposed. Fox & Tenenbaum have pro-
posed the following criteria as a basis for evaluating an
ontology: generality, efficiency, perspicuity, transformabil-
ity, extensibility, granularity, scalability and competence
[Fox & Tenenbaum 90] [Fox et al 93]. Gruber has pro-
posed: clarity, coherence, extensibility, minimal encoding
and minimal ontological commitment [Gruber 93].

The criterion we have chosen to evaluate our work is
competence. The competence of a representation defines
the types of tasks that the representation can be used in.
Moreover, competency questions represent the starting
point of the ontology development; the competency ques-
tions set the requirements for the ontology which in turn
results in the modification of the competency questions.
The obvious way to demonstrate competence is to define
a set of questions that can be answered by the ontology.
Given a representation and an accompanying theorem
prover (such as Prolog), questions can be posed in the
form of queries to be answered by the theorem prover.
The creation of competency questions and an ontology is
an iterative process; from the competency questions the
ontology is derived which in turn results in a modifica-
tion of the competency questions.

For example, in a study performed, over 30 managers
from three different Westinghouse Corporation plants
were asked to record the questions frequently asked [Fox
83]:

• What is the effect of the current state on the design

and material specifications?

• What is the safe inventory level?

• What is the effect of machine X breaking down on the

product Z production?

• When is the expected finish time of the job j?

• If order O is shipped then inform the client.

• What are the required specifications that must be met

by part X suppliers.

These questions can serve as a set of competency ques-
tions for an enterprise model. Following are a subset of
questions we have considered in the creation of the
TOVE model.

• Divisibility: Can the resource be divided and still be

usable?

• Quantity: What is the stock level at time t?

• Location: Where is resource R?

• Consumption: Is the resource consumed by the

activity? If so, how much?

• Commitment: What activities is the resource com-

mitted to at time t?

• Structure: What are the subparts of resource R?

• Capacity: Can the resource be shared with other

activities?

• Trend: What is the capacity trend of a resource based

on the machine usage history?

3. Resource Ontology

We view that “being a resource” is not innate property of
an object, but is a property that is derived from the role an
object plays with respect to an activity. That is to say that
properties of a resources determined by the activity.
Accordingly, resources could be: Machines such as mill-
ing machines when associated with milling activities,
Electricity or Raw materials consumed by an activity,
Tools/Equipment such as fixtures, cranes, chairs etc., Cap-
ital needed to perform an activity, Human skill when
needed to perform an activity, Information required to
start an activity. In our analysis, we have strived to iden-

tify the primitive resource properties on which more
complex properties, such as capacity recognition, are
defined. Following are some examples of resource ontol-
ogy* †.

• Resource-known: This is the most basic term in the

ontology. It specifies knowledge of a resource as

opposed to its physical existence. The importance of

this definition lies in the fact that the ability to reason

about a resource depends on it being known.

rknown(R). (PRO 1)

• Resource role: In TOVE, a resource has a role with

respect to an activity. These roles are: raw material,

product, facility, tool, operator.

role(R, A, Role). (PRO 2)

This entails that when a resource is defined as having
a role with respect to an activity, then the resource can
not have any other role with respect to the same activ-
ity.

∀(r, a, role1, role2) role(r, a, role1) ∧ role1 ≠ role2 ⊃
¬ role(r, a, role2) (FOL 1)

• Division of: This term specifies that a resource could

be divided. There are two types of divisions: physical,

and functional. “Physical division of” specifies a divi-

sion that is neither mental, moral or imaginary but is

related to the division of the physical body of an

object; “functional division of” specifies a division

affecting the function and not structure. A “crank

shaft” is a physical and a functional division of a

“motor”.

physical_division_of(R2, R). (PRO 3)

functional_division_of(R2, R). (PRO 4)

• Divisibility of a resource: This term specifies the

property of a resource as being divisible with respect

to an activity without affecting the role of the

resource with respect to an activity. There are three

types of divisibility: physical, functional and tempo-

ral divisibility.

*. For more examples and details please refer to [Fadel 94].

†. The first order logic formulation are tagged as (FOL #)
while the Prolog implementation are tagged as (PRO #).

A resource is physically divisible if the act of physi-
cally dividing the resource does not affect its role in
the activity. In other words, the resource is physically
divisible if each division can be used or consumed by
the same activity‡. That property is useful for planner/
scheduler when deciding whether a portion of resource
could support an activity. Functional divisibility of a
resource, with respect to an activity, specifies that each
division of the resource affects the functionality and
not the structure of the resource. A parking lot is an
example of such resources as the lot has a number of
functional divisions that are used by parking activities.
A “motor” is neither physically and functionally divisi-
ble when associated with “driving a car” activity.
Finally, a resource is said to be temporal divisible if the
use of a resource over time does not affect the future
usability of the resource by the same activity.

“A resource is physically divisible with respect to an
activity if each physical division of the resource has
the same role”.

∀(r, a) physical_divisible(r, a) ≡ ∀(r1, ro1)
physical_division_of(r1, r) ∧ role(r1, a, ro1) ⊃

role(r, a, ro1) (FOL 2)

“A resource is functionally divisible with respect to an
activity if each functional division of the resource has
the same role”.

∀(r, a) functional_divisible(r, a) ≡ ∀(r1, ro1)
functional_division_of(r1, r) ∧ role(r1, a, ro1) ⊃

role(r, a, ro1) (FOL 3)

“A resource is temporally divisible with respect to an
activity A1 if there exists a time period in which two
activities, including A1, were executing with the con-
dition that the first activity (A1) was either suspended
or completed and the resource had the same role with
both activities. Moreover, both activities were not exe-
cuting simultaneously (i.e overlapping constraint).”

∀(r, a) temporal_divisible(r, a) ≡
∃ (ti, ti1, ti2, tp1, tp2, a1, a2, s1, s2, role1)

(uses(s1, r) ∨ consumes(s1, r)) ∧
(uses(s2, r) ∨ consumes(s2, r)) ∧

is_related(a1, s1)** ∧ is_related(a2, s2) ∧
time_bound(s1, ti1)†† ∧ time_bound(s2, ti2) ∧

‡. i.e each division shares the same role of the original resource.

**. is a term defined in the activity-state ontology specifies an
activity is linked (related) to a state.

activity(a1,executing,tp1)*∧period_contains(ti1,
tp1)† ∧

((activity(a1,suspended,tp_end)∧tp_end =EP(ti1)‡)
∨

((activity(a1, completed,tp_end) ∧ tp_end = EP(ti1))
∧

activity(a2, executing, tp2) ∧ period_contains(ti2,
tp2) ∧

¬overlaps(ti1,ti2) ∧contains(ti, ti1) ∧contains(ti, ti2)
∧

 role(r, a1, role1) ∧ role(r, a2, role1) (FOL 4)

• Unit of measurement: This predicate specifies a

default measurement unit for a resource, when associ-

ated with activity. Accordingly, resource quantity or

capacity is to be measured using the specified unit of

measurement. This term is used for specifying both

the qualitative and quantitative units of measurement.

Qualitative units of measurement consist of an

ordered set such as {large, medium small}. Qualita-

tive units can be also used as a measure of quality:

{good, bad}. Quantitative units are used to specify

attributes such as weight, length, capacity.

unit_of_measurement(R,Unit_ID,Unit,A).(PRO 5)

• Measured by: “Measured by” defines the objects by

which a resource is measured with respect to an activ-

ity. This term acts as a constraint on the “unit of mea-

surement” term. Each unit of measure must have a

corresponding “measured by” assertion.

measured_by(R, Unit_id, A). (PRO 6)

As mentioned, a constraint on the “unit of measure-
ment” is that there should be a corresponding mea-
sured by assertion

(∀ r) (∃ unit_id, a) measured_by(r, unit_id, a) ⊃ (∃ u)
unit_of_measurement(r, unit_id, u, a) (FOL 5)

††. time_bound(s,ti) specifies that ti is the time of interval of
the state.

*. activity(a1, executing, tp1) specifies that activity a1 has to be
executing at time point tp1.

†. period_contains(ti, tp) specifies that time point tp is con-
tained by ti time period.

‡. EP(ti) is function that returns the end time point of an inter-
val.

• Component of: “Component of” specifies a resource

as being a part of another resource implying that a

resource consists of one or more sub-resources (i.e

sub components). A resource can be a physical or

functional component of another resource with

respect to an activity and each does not share the

same role with the original resource. This term is used

for example in the bills of material explosion of parts.

“A resource R2 is a physical component of resource
R1 if R2 is a physical division of the R1 and both
resources do not share the same role with respect to
an activity”.

∀(r1, r2) physical_component_of(r2, r1) ≡
∀(a, r, ro1) physical_division_of(r2, r1) ∧
role(r2, a, ro1) ⊃ ¬role(r1, a, ro1) (FOL 6)

“A resource R2 is a functional component of resource
R1 if R2 is a functional division of the R1 and both
resources do not share the same role with respect to
an activity”.

∀(r1, r2) functional_component_of(r2, r1) ≡
∀(a, r, ro1) functional_division_of(r2, r1) ∧
role(r2, a, ro1) ⊃ ¬role(r1, a, ro1) (FOL 7)

• Quantity: A resource point (rp) specifies a resource’s

quantity at a some time and unit of measure.

figure 1 3-D resource point - in terms of
quantity, time and location

figure 2 2-D resource point - in terms of
quantity and time

rp(Unit)

1
2
3
4
5

L1 L1

time horizon
1 2 3 4

L1 L1 L2 L3

5

L1 L2 L3

time horizon

rp(unit)

1 2 3 4 5 6 7 8 9

1
2
3
4
5

We have defined two resource point terms - 3-D and
2-D definitions. The 3-D definition (figure 1) is
asserted as a ground term and is defined in terms of
time, location and quantity* while the 2-D definition
(figure 2) represents resource amounts aggregated
across all locations and is calculated using 3-D rp
assertions†.

rpl(plug, 100, tp90, ss12, unit).(PRO 7)

For example the above assertion, 3-D rpl definition,
specifies the existence of a resource point for resource
plug at time point tp90, with quantity of 100 units at
location ss12.

?- rp(resource, Q, time, unit). (PRO 8)

The 2-D resource point definition returns the summa-
tion of all resource point quantities for resource, over
all locations at a specific time point. Besides that abil-
ity to represent physical resource quantities, resource
point is also used for the identification of capacity of
reusable resources such as in the example of ftp site
where rp would denote to the unused accessed lines.

• Application specification: The predicates in this sec-

tion are defined for notational convenience. The con-

sumption, use and produce specifications specify the

amounts of the resource that is to be consumed, used

or produced respectively over a time interval as well

as the unit of measurement. The information included

in these specifications‡ are already defined in the

activity state ontology. There are three application

specification: consumption, use and production speci-

fications.

consumption_spec(R,A,Ti,Q,Rate, Unit).(PRO 9)

use_spec(R,A,Ti,Q,Rate,Unit). (PRO 10)

produce_spec(R,A,Q,Rate,Ti,Unit). (PRO 11)

where Q represent the total number consumed/pro-
duced by an activity or the portion of the resource
used by an activity.

The application specification, consumption specifica-
tion for example, concatenates the specification into
one term as defined in the following FOL formula-
tion:

*. rpl(resource, quantity, time_point, locations, unit).

†. rp(resource, quantity, time_point, unit).

‡. i.e the arguments of each term

(∃ a, q, ti, u) (∀r) consumption_spec(r, a, q, ti, u) ≡
(∃ s, s2, unit_id) enabling(s, a) ∧

is_related(a,s2,) ∧ consumes(s2, r)** ∧ quantity(s2,
q)†† ∧ time_bound(s2, ti)‡‡ ∧

 unit_of_measurement(r, unit_id, u, a) ∧
measured_by(r, unit_id, a) (FOL 8)

“The consumption specification term entails that the
resource amount will be decremented after the comple-
tion of the activity”*** †††.

(∀r, a, s, ti, q’, rate, unit)
consumption_spec(r, a, ti, q’, rate, unit) ≡
(∀ s, r, a, q, ti, tp, tp’) rp(r, q, tp, unit_id) ∧

((is_related(a, s) ∧ consumes(s, r)) ∧tp = SP(ti) ∧
tp’ = EP(ti)∧ enabling_state(s, tp, enabled)

⊃ rp(r, q - q’, tp', unit) (FOL 9)

“The use specification term entails that the resource
amount will remain constant, if the resource is being
used”

(∀r, a, s, ti, q’, rate, unit)
use_spec(r, a, s, ti, q’, rate, unit) ≡ (∀ s, r, a, q, ti, tp,

tp’)
rp(r, q, tp, unit_id) ∧ (is_related(a, s) ∧ uses(s, r)) ∧tp =

SP(ti) ∧ tp’ = EP(ti) ∧ enabling_state(s, tp, enabled)

⊃ rp(r, q, tp', unit) (FOL 10)

“The produce specification term entails that the
resource amount will increase by a constant, if the
resource is being used”.

(∀r, a, s, ti, q’, rate, unit)
produce_spec(r, a, s, ti, q’, rate, unit) ≡

(∀ s,r,a,q,ti,tp,tp’)
rp(r, q, tp, unit_id) ∧ (is_related(a, s) ∧ produces(s, r)) ∧
tp = SP(ti) ∧ tp’ = EP(ti) ∧ enabling_state(s, tp, enabled)

⊃ rp(r, q + q’, tp', unit) (FOL 11)

**. consumes(s2,r) specifies that state s2 consumes resource r.

††. quantity(s2, q) specifies that state s2 requires q of the
resource.

‡‡. time_bound(s2, ti) specifies that ti is the time interval of s2
state

***. Reiter discusses effect axioms in [Reiter 91]. In TOVE, there
are number of effect axioms and the committed-related ones are
some examples [TOVE 92] [Gruninger & Fox 94].

†††. SP(ti) represents that starting point of time period ti, while
EP(ti) represents the end point of time interval ti.

• Continuous vs. discrete resources: A continuous

resource indicates a resource that is uncountable.

These resources are marked by uninterrupted exten-

sion in volume. Discrete resources on the other hand

specify that a resource is countable. These terms are

defined relative to an activity.

(∀ r, a) [continuous(r, a) ≡ physical_divisible(r,
a)] (FOL 12)

(∀ r, a) [discrete(r, a) ≡ ¬ continuous(r, a)] (FOL 13)

The implication of the above is if the resource is dis-
crete and the consumption or the use specification is
defined in terms of integer amounts*.
∀(r, a, q, ti, u) (consumption_spec(r, a, q, rate,ti, u)

∨ use_spec(r, a, q, rate,ti, u)) ∧ discrete(r, a)

⊃ integer(q) (FOL 14)

• Usage Mode: Usage mode axiom returns whether a

resource supports an activity on a discrete or continu-

ous basis. The term does not imply that the activity is

discrete or continuous. The mode of usage is

depended on the activity that uses/consumes the

resource.

“The mode of usage is achieved through checking the
use/consume/produce specification term. If the of the
quantity term (Q) is equal to the rate term (Rate) in the
specification, then the process is discrete otherwise
the process is continuous with a rate which is equal to
the rate parameter”

(∀ r, a) continuous_mode(r, a) ≡ (∃ q, unit, rate, ti)
((use_spec(r, a, ti, q, rate, unit) ∨

consumption_spec(r, a, ti, q, rate, unit) ∨
produce_spec(r, a, ti, q, rate, unit)) ∧q ≠ rate (FOL 15)

(∀ r, a) discrete_mode(r, a) ≡ (∃ q, u, rate, unit)
((use_spec(r, a, ti, q, q, unit) ∨

consumption_spec(r, a, ti, q, q, unit) ∨
produce_spec(r, a, ti, q, q, unit)) (FOL 16)

If a usage mode of a resource is continuous with
respect to an activity, that implies that the resource is
continuous.

(∀r, a) continuous_mode(r, a)≡ continuous(r, a)(FOL 17)

*. integer(q) is used specifying that q is an integer

• Simultaneous Use Restriction: Simultaneous use

restriction prohibits the use/consumption of a

resource by two activities simultaneously. For exam-

ple, this term is used to specify that two activities can

not use the resource “oven” simultaneously as both

activities require different operating temperature†.

The predicate is defined as ground term with the fol-
lowing parameters:

• A1: activity ID of the first activity using a
resource.

• A2: activity ID of the second activity using a
resource.

• R: ID of the resource to be used.

simultaneous_use_restriction(A1, A2, R).(PRO 12)

This term specifies that activities A1 and A2 can not
be supported by resource R at the same time. This
entails that both activities can not commit the
resource over two overlapping intervals.

(∀ a1, a2, r) simultaneous_use_restriction(a1, a2, r) ≡
(∀ s, s2, r, a, a2) (¬ ∃t) use(s, a) ∧ uses(s, r) ∧

use(s2, a2) ∧ uses(s2, r)
⊃ enabling_state(s, tp, enabled) ∧

enabling_state(s2, tp, enabled) (FOL 18)

• Committed to: This predicate to specifies the com-

mitment of a resource to an activity thereby making

the resource partly/fully unusable/inconsumable by

any other activity. A resource is committed to an

activity as a result of a scheduling activity.

Committed_to is defined as a ground term with the
following parameters:

• R: ID of the resource to be used/consumed.

• A: ID of the activity to use/consume the
resource.

• S: the ID of the state that is satisfied by the
assertion of the committed term.

• Ti: the ID of the time interval of the activity.

• Amount: amount of the resource that is commit-
ted to an activity.

†. this term is also use case one activity negatively interacts
with the other

• Unit: unit of measurement.

committed_to(R, A, S, Ti,Amount, Unit).(PRO 13)

“A constraint on the committed to term is that the time
interval of commitment should either be equal or
greater than that is defined in the specification”.

(∀r, a, s, ti, ti2, q, q’, rate, unit)
committed_to(r,a,s,ti,q’,u) ∧

(consumption_spec(r, a, ti2, q, rate, unit) ∨
use_spec(r, a, ti2, q, rate, unit)) ⊃

(contains(ti, ti2) ∨ equal(ti, ti2)) (FOL 19)

• Total Committed: This predicate specifies the total

amount committed of a resource to all activities at a

specified time point. The total commitment of a

resource is defined to be the summation of all amount

committed of resources to all activities. The first

order logic would be in the form of:

(∀ r, tp, u) (∃ TQ) total_committed(r, TQ, tp, u) ≡
(∃ pd1, pd2 … pdn, a1, a2 … an, q1, q2 … qn)

committed_to(r,a1,pd1,q1,u) ∧
period_contains(ti, pd1) ∧

(committed_to(r, a2, pd2, q2, u) ∧ …… ∧ c
ommitted_to(r, an, pd2, qn, u) ∧
TQ = q1+ q2 + …+ qn (FOL 20)

“An effect of a resource being committed is that after
the completion of the activity the total amount com-
mitted will be decremented”*.

(∀ s, r, a, q, q’, ti, tp, tp’, u)
((use(s, a) ∧ uses(s, r)) ∨

(consume(s, a) ∧ consumes(s, r)))∧
total_committed(r, q’, tp, u) ∧

enabling_state(s, tp, possible) ∧ (tp = SP(ti)) ∧
(tp’ = EP(ti)) ⊃

total_committed(r, q - q’, tp’, u) (FOL 21)

• Capacity: Capacity is defined to be the maximum set

of activities that can simultaneously use/consume a

resource at a specific time. In the case where the

resource is physically indivisible then the capacity

denotes an activity that could use/consume the

resource. On the other hand if the resource is physi-

*. In TOVE, this axiom is called an effect axioms which links
the resource ontology with the causal theory of activity [Fadel
et al 94].

cally divisible†, capacity represents the number of

activities that a resource can support simultaneously.

The complexity of the process of determining the
capacity of a resource depends on the activities requir-
ing the resource and the activities already supported by
the resource. Capacity determination problem is reduc-
ible to the scheduling problem. The capacity recogni-
tion process is solvable in polynomial time in the case
where the activities using/consuming the resource are
homogenous. Homogeneity implies that activities
require equivalent amounts of the resource and pro-
cessing time or integral multiple thereof. Accordingly
the output of the capacity recognition process is reduc-
ible to a number which represents the number of activ-
ities that the resource could be allocated to. The
process becomes complex in the case where the activi-
ties requiring the resource are heterogenous. Finding
the maximum set of activities is reducible to a single
machine scheduling problem which is NP-hard. If the
resource is functionally divisible, then the process
becomes NP-hard in the strongest sense as the resource
can support multiple activities simultaneously. What is
required is a sequencing heuristic for a number of
activities that are to use or consume a resource in a pre-
determined time window. The sequencing heuristic is
to be defined for a certain objective such as to mini-
mize the number of tardy activities.

One of the terms defined for the capacity recognition
process is available for. A resource is available for an
activity if the resource’s quantity can support the activ-
ity and there is no simultaneous use restriction between
the activity requiring the resource and the ones already
supported by the resource. Following is a logical spec-
ification of this definition:

(∀r) (∃a, ti,) available_for(r, [a], ti) ≡
(∀ tp ∈ ti) (∃ unit_id, u, amt_required, tq, q, amount1,

amount2 … amountn, rate1, rate2 … raten)
(consumption_spec(r, a1, ti, amount1, rate1, unit) ∨

use_spec(r, a1, ti, amount1, rate1, unit)) ∧
(consumption_spec(r, a2, ti, amount2, rate2, unit) ∨
use_spec(r, a2, ti, amount2, rate2, unit)) ∧ …… ∧

(consumption_spec(r, an, ti, amountn, raten, unit) ∨
use_spec(r, a, ti, amountn, raten, unit)) ∧

amt_required = amount1+amount2 + ……+amountn
∧ (period_contains(ti, tp) ∧

†. implying having the ability being shared by multiple activi-
ties.

(total_committed(r, tq, tp, unit))∧
unit_of_measurement(r, unit_id, u, a) ∧

 measured_by(r, unit_id, a) ∧ rp(r, q, tp, unit) ∧
(amt_required ≥ q- tq) ∧

((∀ax ∈ a) no_restricition(r, a, ax, ti)) (FOL 22)

no_restricition(r,a,ax,ti) ≡
(committed_to(r,ax,s,ti2,q,u) ∧

(a ≠ ax) ∧ period_overlaps(ti, ti2) ∧
¬(simultaneous_use_restriction(a, ax, r))) (FOL 23)

• Activity history: This predicate specifies the history

of usage or consumption of a resource before a speci-

fied time point. A list of activities that were supported

by the resource will be returned.

“An activity will be included in the list of activities,
that were supported by the resource, if the resource
was committed to the activity for a time period with
end time less or equal than the specified time point”.

(∀ r) (∃act_list, tp) activity_history(r, act_list, tp) ≡
(∀ a∈ act_list)(∃ti, q, u, a, s)

(committed_to(r, a, s, ti, q, u) ∧ period_before(ti, tp) ∧
enabling_state(s, tp, completed) (FOL 24)

• Resource configuration: This term specifies the con-

figuration of a resource with respect to an activity.

This term implies that for the activity to the resource

must have the specified configuration. Moreover,

after the completion of the activity, C is going to be

the configuration of the resource unless changed.

This term is divided as a ground term with three argu-
ments:

• R: resource ID

• C: ID specifying the configuration of the
resource

• A: activity with which the resource has C con-
figuration

resource_configuration(R, C, A). (PRO 14)

This implies that if activities a1 and a2 require the
same resource but both activities require different
configuration, then that implies that the resource can
not support both activities simultaneously (i.e there is
a simultaneous use restriction constraint).

(∀ a1, a2, r) (∃ q1, q2, ti1, ti2, rate1, rate2, c1)
(use_spec(r, a1, ti1, q1, rate1, u) ∨

consumption_spec(r, a1, ti1, q1, rate1, u))∧
(use_spec(r, a2, ti2, q1, rate2, u) ∨

consumption_spec(r, a2, ti2, q1, rate2, u)) ∧
resource_configuration(r, c1, a1) ∧

¬resource_configuration(r, c1, a2) ⊃
simultaneous_use_restriction(a1, r, a2) (FOL 25)

• Set up constraint: Set-up term specifies the duration

required to set-up a resource for usage by an activity.

The set time is defined with regards to pair of activi-

ties. The set-up time includes configuration and loca-

tion dependent time. In the configuration set-up time,

the specified duration as a function of the time

required to change the resource’s configuration state,

as result of the last activity supported, to that implied

by the activity requiring the resource. As for the loca-

tion set-up time, it specifies the duration required for

the resource to transport or be transported from one

location to another.

“Set up time is equal to the time required to change
the resource’s configuration. If the resource needs to
relocated, then the set up time also includes the time
of transportation”

(∀ r, a2, l2, dur, u) set_up(r, a2, l2, dur, u) ≡
(∃ a1, ti, q, c, tp1, l1, ct, lt, u2, s1)
committed_to(r, a1, s1, ti, q, u) ∧

 tp = EP(ti) ∧ resource_configuration(r, c, a) ∧
rpl(r, q, tp1, l1, u) ∧

(config_set_up(r, a1, a2, ct, u2) ∧
loc_set_up(r, l1, l2, lt, u2) ∧ dur = ct + lt) (FOL 26)

The set-up duration is the summation of the configu-
ration and location dependent set-up times. If the
resource is not to be moved from a location*, then the
set up time id only the time needed to re-configure the
resource.

Configuration set-up time (config_set_up) is defined
as a ground term with these arguments:

• R: resource ID

• A1: the activity that caused the last configura-
tion change of the resource

*. i.e already in the location required by the activity

• A2: activity requiring the change in the configu-
ration of the resource

• CT: configuration dependent set-up time

• Unit: temporal unit of measurement

config_set_up(R, A1, A2, CT,
Unit). (PRO 15)

Location set-up time is defined as a ground term with
five arguments:

• R: resource ID

• L1: the location from which the resource is to be
relocated

• L2: destination of the resource

• LT: location dependent set-up time

• Unit: temporal unit of measurement

loc_set_up(R, L1, L2, LT, Unit). (PRO 16)

• Alternative resource: This term specifies an alterna-

tive resource(s) to be used or consumed by an activ-

ity. This is useful in the case when an alternative

resource is required because of a machine breakdown

or unavailability of a resource.

“There exist an alternative resource for an activity, if
there exists a disjunct non-terminal enabling state”

(∀ r, a) (∃ list) alternative_resource(r, a, list) ≡
(∃ s, s2, disjunct_state) uses(s2, r) ∧

is_related(s2, s) ∧
subclass_of(s, disjunct_state) (FOL 27)

• Relation between resource ontology and activity-
state ontology: A state in TOVE represents what has

to be true in the world in order for an activity to be

performed, or what is true in the world after the com-

pletion of an activity. The status of a state, and any

activity, is dependent on the status of resources that

the activity uses or consumes. One of the status that a

state could have is possible. A consume state* could

be possible if:

• the resource is available for the activity and

• the resource has not been committed yet to the
resource and

• the activity is not executing.

*. i.e the state of an activity consuming a resource.

(∀ state_id) (∃ tp) possible(state_id, tp) ≡
(∃ r, a, ti, unit) (consume(state_id, a) ∨

consumes(state_id, r)) ∨ (use(state_id, a) ∨
uses(state_id, r)) ∧

available_for(r, a, ti) ∧ ¬committed_to(r, a, state_id,
ti, amount, unit) ∧ period_contains(ti, tp) ∧

¬activity(a, executing, tp)† (FOL 28)

Moreover a consume state is completed if:

• the activity is in the activity history of the
resource.

(∀ state_id) (∃ tp) completed(state_id, tp) ≡
(∃ r, a, act_list)

((consume(state_id, a) ∧ consumes(state_id, r)) ∨
(use(state_id, a) ∧ uses(state_id, r))) ∧

activity_history(r, act_list, tp) ∧ member_of(a,
act_list) (FOL 29)

4. Examples of competency
questions:

Recall that the competency questions are the basis (start-
ing point) of ontology development. Similar to the
approach in defining the ontology, competency questions
are defined starting with the most simple questions‡. What
is presented in this section is some examples of compe-
tency questions and their Prolog implementation**; it
shows how the ability to answer a query depends on the
availability of number of ontologies.

� � Is there enough capacity for the performance of

“fabricate_short_shaft_1” and “fabricate_short_shaft_2”

activities on the “mold1” resource in the next hour?

(Given a number of activities requiring the resource

mold1, what is the capacity of the resource during a time

period?)

|?- available_for(mold1, [fabricate_-

short_shaft_1, fabricate_short_-

shaft_2], pd3, Result)††.

†. activity(a, executing, tp) specifies that activity a is executing at
time point tp.

‡. i.e the competency are stratified.

**. A query in Prolog is proceeded by “|?-”. A variable is repre-
sented as capital letters.

††. Figures 3 and 4 present a taxonomy of ontology and axioms
required to answer the query.

figure 3 ”available for” requires the
following ontology

Requires

|?- functional_division_of(R, mold1)

|?- physical_division_of(R2, mold1).

|?-unit_of_measurement(mold1,Unit_ID

|?- functional_divisible(mold1,

no.

R2 = rectangle_1;

Unit_ID = rectangle_1
U = rectangle_1;

yes

|?- use_specification(mold1,

Q = 30;
no

U, fabricate_short_shaft_1).

no

no

fabricate_short_shaft_1,pd1,30,30,

fabricate_short_shaft_1).

recatngle_1).

division_of is usedto reason about
the sharability of the resource
resource.(i.e used indivisible term)

continued next figure

|?- total_committed(mold1, TQ, tp,

|?- rpl(mold1, Q, tp2, rectangle_1).

TQ = 30;
no

Q = 150;
no

rectangle_1).

|?- simultaneous_use_restriction(

A2, mold1).
no.

fabricate_shirt_shaft_1,

simultaneous_use_restriction is used
so that no two confliction activities
can use resource simultaneously

figure 4 ”available for” requires the
following ontology -cont’d

Result = [fabricate_short_shaft_1];

no

A smooth production requires the availability of
resources at the time of productions. Resources should be
replenished before the stock reaches a certain limit and
that is checked through using the following query.

� � Is the stock for short_shaft in danger of being

depleted between now and the end of the week?*

|?- rp(short_shaft, Q, Tp), Tp > now,

Tp < tp333, Q < 20.

*. i.e will the resource point fall below then a certain value

|?- has_current_activity(mold1,List,

temporal ontology (e.g before, after)

|?-enabling_state(

|?-committed_to(mold1,A,S,_,tp,

Requires

A = fabricate_short_shaft_2
S = es_fabricate_short_shaft_2;
no

Status = enabled;
no

List = assemble_clip_reading_lamp,

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

tp).

rectangle_1).

fabricate_short_shaft_2,tp,
Status).

assemble_hand;
no

continuation of last figure

has_current_activity is used to
to find out if the activities
requiring and supported by the
resource are homogenous/
heterogenous

the resource has the capacity to only
support fabricate_short_shaft_1
activity

Q = 15

Tp = tp23;

Q = 10

Tp = tp200;

no

Assignment of resources (or alternative resources) is a
crucial function in a manufacturing environment. This is
used in case of resource unavailability, for example, due
to a machine breakdown or delay in a shipment.

� � Can resource mold2 be used instead of resource

mold1? (Is mold2 an alternative resource of mold1 for

activity fabricate_short_shaft?)

|?- alternative_resource(mold1, fab-

ricate_short_shaft, List), member_-

of(mold2, List).

figure 5 “alternative resource” requires

List = [mold2];

no

Another important function in planning is to be able to
explode the bill of material of a resource.

� � What are the components of resource

clip_reading_lamp? (What are the physical compo-

nent of the resource?)

|?- physical_component_of(R,

clip_reading_lamp, A, Type).

activity state ontology.

Requires

|?- role(R2,

yes

the alternative resources has to have
same role

fabricate_short_shaft_1, tool).

mold2 is an alternative resource for
the activity fabricate_short_shaft_1

figure 6 “physical component of” requires

R = clip_base

A = assemble_clip_reading_lamp

Type = physical;

R = short_arm

A = assemble_clip_reading_lamp

Type = physical;

R = small_head

A = assemble_clip_reading_lamp

Type = physical;

no

5. Conclusion

In this paper we have presented an ontology for resources
in a manufacturing enterprise environment. This ontology
has the characteristics of being generic and reusable over a
wide variety of applications. The ontology provides the
capability of deductively answering common sense ques-
tions about the enterprise knowledge. In particular it us to
reason about how properties of resources change as the
result of activities, and also to reason about the allocation
of resources in a scheduling task through capacity recogni-
tion. This work lays the foundation for further research in
additional planning, scheduling and modelling tasks in
enterprise engineering.

6. Acknowledgments

This research is supported, in part, by the Natural Science
and Engineering Research Council, Carnegie Group Inc.,
Quintus Corp., Digital Equipment Corp., Micro Electron-
ics and Computer Research Corp., and Spar Aerospace.

|?- physical_division_of(R2,

Requires

|?- role(R2,

each physical division should not

original resource
share the same role with the

clip_reading_lamp).

fabricate_short_shaft_1, tool).

7. References

[Esprit 90]ESPRIT-AMICE. CIM-OSA - A Vendor Inde-
pendent CIM Architecture. Proceedings of CIN-
COM 90, pages 177-196. National Institute for
Standards and Technology, 1990.

[Fadel 94]Fadel, Fadi George, Microtheory of resources,
M.A.Sc thesis, University of Toronto, to be
published 1994.

[Fox 83] Fox, M.S.,The Intelligent Management System:
An Overview, Processes and Tools for Decision
Support, North-Holland Publishing Company,
1983.

[Fox & Tenenbaum 90] Fox, M.S., and Tenenbaum, J.M.,
(1991), Proceedings of the DARPA Knowledge
Sharing Workshop, Santa Barbara Ca.

[Fox et al 93]Fox, Mark S., Chionglo, John F., Fadel, Fadi
G., Towards Common Sense Modelling of an
Enterprise, Proceeding of the Second Industrial
Engineering Research Conference, 1993.

[Fox & Gruninger 94] Fox, Mark S., Gruninger, Michael,
Ontology for activity for Enterprise Engineering,
submitted to Twelfth National Conference on
Artificial Intelligence (AAAI-94).

[Gruber 91]Gruber, Thomas R., The Role of Standard
Knowledge Representation for Sharing Knowl-
edge-Based Technology, To appear in: Allen, J.
A., Fikes, R., and Sandewell, E. (Eds) Princi-
ples of Knowledge Representation and Reason-
ing: Proceedings of the Second International
Conference, 1991.

[Gruber 93]Gruber, Thomas R., Toward Principles for the
Design of Ontologies Used for Knowledge Shar-
ing, KSL 93-4, Computer Science Department,
Stanford University, 1993.

[Martin 83]Martin, C., and Smith, S. Integrated Computer-
aided Manufacturing (ICAM) Architecture Part
III/Volume IV: Composite Information Model of
“Design Product” (DES1). Technical Report
AFWAL-TR-82-4063 Volume IV, Materials
Laboratory, Air Force Wright Aeronautical
Laboratories, Air Force Systems Command,
Wright-Patterson Air Force Base, Ohio 45433,
1983.

[Reiter 91]Reiter, R., The frame problem in the situation
calculus: A simple solution (sometimes) and a
completeness result for goal regression. Artificial
Intelligence and Mathematical Theory of Com-
putation: Papers in Honor of John McCarthy.
Academic Press, San Diego, 1991.

[Scheer 89]Scheer, A-W. Enterprise-Wide Data Modelling:
Information Systems in Industry. Springer-Ver-
lag, 1989.

[TOVE 92]Fox, Mark S., Chionglo, John, Fadel, Fadi
George, The TOronto Virtual Enterprise model,
Enterprise Integration Laboratory, University
of Toronto, 1993.

[Williams 91]Williams, T.J., and the Members, Industry-
Purdue University Consortium for CIM. The
PURDUE Enterprise Reference Architecture.
Technical Report Number 154, Purdue Labora-
tory for Applied Industrial Control, Purdue
University, West Lafayette, IN 47907, 1991.

