
A COST ONTOLOGY FOR ENTERPRISE MODELLING

K. D.(Donald) Tham, Mark S. Fox, Michael Gruninger

Department of Industrial Engineering, University of Toronto
4 Taddle Creek Road, Toronto, Ontario, Canada, M5S 1A4

Abstract
There is an urgent need to formalize Activity-Based

Costing (ABC) for purposes of implementation and usage
in enterprises so that enterprises have access to the criti-
cal element of global success, viz., strategic management
accounting. To make this possible, the authors present a
core cost ontology and micro-theory of costing for enter-
prise modelling that spans the knowledge representation
of activity, status of activity, time, causality, and
resources. This ensures that ABC may be generically
deployed in any enterprise to achieve effective activity-
based cost management irrespective of the enterprise
belonging to the manufacturing or service sectors.

Area: Cost Ontology, Activity-Based Costing (ABC),
Strategic Cost Management, Enterprise Modelling, Business
Process Reengineering, Enterprise Integration Framework.

1.0 Introduction
There is an urgent need to formalize Activity-Based

Costing (ABC) for the purpose of incorporating costs
into enterprise information systems. The September,
1993 issue of the FOCUS publication of the National
Center for Manufacturing Sciences explicitly recognizes
that ABC offers the management accounting strategy for
American manufacturers wanting to achieve a strong glo-
bal competitive advantage.

The ABC concept includes the assignment of cost to
activities based on their use of resources, and the assign-
ment of costs to “cost objects” based on their use of activ-
ities (CAM-I glossary, 1991). [Within the ABC literature,
the term “cost objects” refers to the reasons for which
activities are performed in enterprises]. Since ABC assigns
costs to activities based on their use of resources, the logical
formulation of ABC must be premised on the existence of
some given or identifiable basic or primitive resource costs,
[later defined in Sec. 4.3 as Resource Cost Units], that must

be associated with each resource that is required by an
activity.

To ensure that ABC may be generically deployed in
any enterprise (manufacturing or service industry), a core
cost ontology and micro-theory of costing, that spans the
representation of activity, status of activity, time, causal-
ity and resources, are presented for enterprise modelling.
The deployment of ABC to improve business is com-
monly referred to as Activity-Based Management
(ABM). ABC and ABM form the basis of strategic man-
agement accounting or activity-based cost management
for global competitive advantage.

Establishing a core cost ontology guarantees the shara-
bility and re-usability of appropriate terminology in com-
municating relevant cost data for ABC across all
organizational departments. The activity centered costing
micro-theory consists of axioms that use the cost ontol-
ogy. These axioms have been developed in first order
logic so as to provide the generic, sharable and re-usable
mechanisms to compute and deduce costs when pro-
grammed in an AI language such as Prolog. Hence, our
approach towards the formalization of ABC through the
development of the cost ontology and micro-theory will
ensure the minimum costs of software engineering in the
computerization of activity-based cost management for
the operational needs of the enterprise.

In the remainder of this paper, we describe the TOVE
project, which provides the context in which our ontolo-
gies are being created. We then define TOVE’s cost
ontology followed by how it is to be used in cost manage-
ment.

2.0 The TOVE Project and the
Formalization of ABC

The TOVE Project, (TOronto Virtual Enterprise
Project is a current ongoing project at the University of
Toronto, Industrial Engineering Department), includes

Mark Fox
Tham, D., Fox, M.S., and Gruninger, M., (1994), "A Cost Ontology for Enterprise Modelling",
Proceedings of the Third Workshop on Enabling Technologies - Infrastructures for Collaborative
Enterprises , West Virginia University.

two major undertakings: the development of an Enter-
prise Ontology, and a Testbed.

The TOVE Enterprise Ontology provides a generic, re-
usable ontology for modelling enterprises. An ontology is
comprised of a reference data model composed of generic
objects, attributes and relations, and formal definitions of
terms and their constraints in First Order Logic. The
TOVE ontology currently spans knowledge of activity,
state, time, causality, resources, quality and cost (as
developed for the formalization of ABC as per this
paper). The ontology’s data model is implemented on top
of C+ + using the Carnegie Group’s ROCK (Representa-
tion of Corporate Knowledge) knowledge representation
tool and the axioms are implemented in Quintus Prolog.

The TOVE Testbed provides an environment for anal-
ysing enterprise ontologies. The Testbed provides a
model of an enterprise (a lamp manufacturing plant), and
tools for browsing, visualization, simulation and deduc-
tive queries.

A micro-theory is a formalization of knowledge to per-
form a specific task. Our Activity-Based Costing micro-
theory provides a logical formalization of the knowledge
used to derive activity-based costs.

Firstly, the formalization of ABC through the develop-
ment of the cost ontology and costing micro-theory as
developed in this paper is an extension and forms part of the
TOVE Enterprise Ontology for enterprise modelling in gen-
eral. Secondly, some preliminary testing of the imple-
mentation of a limited cost ontology and micro-theory for
ABC computations and deductability have been achieved
through the usage of Quintus Prolog on the TOVE Test-
bed. By taking this approach towards the formalization of
ABC, we hope to enhance the generic capabilities of
enterprise modelling and enterprise engineering within
the TOVE environment independent of the nature of the
enterprise itself.

2.1 Time Representation in TOVE
Time is represented by points and periods (intervals)

on a continuous time line. A time-point lies within an
interval. A time-period is bounded by a start and end
time-point. In TOVE, use of Allen’s temporal relations
[Allen 84] describe the relationships between time-points
and/or time-periods.

2.2 Activity/State Terminology and Semantics
[Fox et al 93]

Enterprises are action oriented, and therefore, the abil-
ity to represent action lies at the heart of all enterprise
models. The CIM-OSA model [ESPRIT 91] stratifies
action from the lowest level of a function, to an enter-
prise activity and up to a business process; the Scheer
representation [Scheer 89] defines function specific
actions, and the PERA model [William 92] has a two
level representation composed of a task at a lower level
and a function at the upper level. In the CAM-I cost man-
agement system (CMS) model, a function is “a group of
activities having a common objective within the business”
[Berliner & Brimson 88]. In TOVE, a single entity called
an activity spans all of the above. In this section, we
briefly describe the terminology and semantics as per
TOVE.

In TOVE, action is represented by the combination of
an activity and its corresponding enabling and caused
states. An activity is the basic transformational action
primitive with which processes and operations can be
represented. An enabling state defines what has to be true
of the world in order for the activity to be performed. A
caused state defines what will be true of the world once
the activity has been completed. An activity along with its
enabling and caused states is called an activity cluster.

FIGURE 1. Examples of Temporal Relations

Relation Symbol

Symbol
for
Inverse Pictorial Example

X starts Y s si

X before Y < >

X during Y d di

X ends Y e ei

FIGURE 2. Activity-State Cluster

An activity specifies a transformation on the world. Its
status is reflected in an attribute called status. The domain
of an activity’s status is a set of linguistic constants:-

• dormant - the activity is idle and has never been exe-
cuting before.

• executing - the activity is executing.
• suspended - the activity was executing and has been

forced to an idle state.
• reExecuting - the activity is executing again.
• completed - the activity has finished.

2.3 Resource and State Terminology and
Semantics [Fadel & Fox, 94]

“Being a resource” is not an innate property of an
object, but is a property that is derived from the role an
object plays with respect to an activity.

Hence, the resource ontology includes the concepts of a
resource being divisible, quantifiable, consumable, reusable,
a component of, committed to, and having usage and con-
sumption specifications.

A state in TOVE represents what has to be true in the
world in order for an activity to be performed, or what is
true in the world after an activity is completed. States
associate resources with activities through the four types
of states which reflect the four ways in which a resource is
related to an activity - use, consume, release, produce.

The status of a state, and any activity, is dependent on
the status of the resources that the activity uses or con-
sumes. All states are assigned a status with respect to a
point in time. There are four different status predicates:-

• committed - a unit of the resource that the state con-
sumes or uses has been reserved for consumption.

• enabled - a unit of the resource that the state con-
sumes or uses is being consumed.

• disenabled - a unit of the resource that the state con-
sumes or uses has become unavailable.

consume
plug

use
inject_mold

produce
plug_on_wire

es_fabricate
plug_on_wire

pro_fabricate
plug_on_wire

enables causes

conjuncts conjuncts

consume
wire

activity state

fabricate
plug_on_wire

release
inject_mold

• reenabled - a unit of the resource that the state con-
sumes or uses is re-available.

• completed - unit of the resource that the state consumes
or uses has been consumed or used and is no longer
needed.

3.0 Competency of the Cost Ontology
A problem in the development of ontologies is deter-

mining whether they are “correct”. A number of criteria
have been proposed for evaluating ontologies, includ-
ing:generality, efficiency, perspicuity, transformability, exten-
sibility, granularity, scalability and competence [Fox &
Tenenbaum 90] [Fox et. al. 93], and clarity, coherence,
extensibility, minimal encoding and minimal and ontologi-
cal commitment [Gruber 93].

The competence of a representation defines the types of
tasks that the representation can be used in. The obvious
way to demonstrate competence is to define a set of ques-
tions that can be answered by the ontology. If no inference
capability is to be assumed, then question answering is
strictly reducible to “looking up” an answer that is repre-
sented explicitly. In defining a shared representation, a key
question then becomes: should we be restricted to just a
terminology? Should the terminology assume an inherit-
ance mechanism? Artificial Intelligence knowledge repre-
sentations and object-oriented representations assume at
least inheritance as a deduction mechanism. Or should we
assume that some type of theorem proving capability is
provided, say, in a logic programming language with axi-
oms restricted to Horne clauses (i.e., Prolog)? What is the
deductive capability that is to be assumed by an ontology?
We propose that for each category of knowledge, a set of
questions be defined that the ontology can answer. Given a
representation and an accompanying theorem prover (i.e.,
Prolog), questions can be posed in the form of queries to
be answered by the theorem prover. Given that a theorem
prover is the deduction mechanism used to answer ques-
tions, the efficiency of a representation can be defined by
the number of LIPS (Logical Inferences Per Second)
required to answer a query.

Following are the questions we have identified as deter-
mining the competency of a cost ontology:-

1. What is the instantaneous and cumulative cost of a
resource used in an activity a at time t?

2. What is the instantaneous and cumulative cost of an
activity a at time t?

3. What is the instantaneous and cumulative cost of an
order o at time t?

4. What is the cumulative cost of the class of activities a?

5. What is the cumulative cost of the class of orders o?

4.0 Cost Ontology for TOVE
We define cost as that entity which represents the tem-

poral fiscal or monetary dimension, attribute, or charac-
teristic of an enterprise activity, and may be referred to as
activity cost.

In TOVE, costs will only change whenever the statii of
states, (hence resources), and activities change. Hence,
we consider a cost event occurring when the status value
of a state and activity change. The quantification of cost
is treated constant with time until a status change occurs.
In fact, we are applying situational calculus to model
costs in a continuous dynamically changing world
through the representation of discrete number of states of
the world.

In order to reason about activities and their costs, we
require a precise representation of:-

1. the generic classification or taxonomies of activity
costs that intuitively or rationally present themselves
in common sense enterprise modelling and our cost
management perspective with TOVE;

2. the computationnal aspects in quantifying the types of
activity costs.

Towards this end, the cost ontology for TOVE will
serve as the data dictionary for the discourse domain of
the cost advisor agent - a software to communicate
cost related data, to perform and to deduce cost com-
putations that assist a human decision maker to
accomplish ABC management at the generic level of
enterprise modelling. The cost ontology uses the terminol-
ogy and semantics of activity, state, resource and time that
have been defined at a generic level for the TOVE environ-
ment [TOVE 93].

4.1 Resource Cost Point of Activity, a, for
Resource, r, at Time point, t: cpr(a,c,t,r)

The quantification of activity cost or the cost value of
an activity associated with a required resource in TOVE
is specified through the usage of the resource_cost_point
predicate, cpr. The cost point predicate specifies the fiscal
quantification of an activity’s resource that requires a
specified resource upto a certain instance of time. The
resource_cost_point of activity for resource, r, at time
point, t, in monetary units, c, is denoted by cpr(a, c, t, r,).

Definition: The resource_cost_point predicate, cpr,
specifies the cost_value, c, (monetary units) of a

resource, r, required by an activity, a, upto a certain time
point, t.

If a resource of the terminal use or consume states, s,
for an activity, a, are enabled at time point, t, there must
exist a cost_value, c, at time point, t, for the activity, a,
that uses or consumes the resource, r. The time interval, ti
= [ts, te], during which a resource is used or consumed by
an activity is specified in the use or consume specifica-
tions as use_spec(r, a, ts, te, q) or consume_spec(r, a, ts, te,
q) where activity, a, uses or consumes quantity, q, of
resource, r, during the time interval [ts, te]. Hence,

Axiom 1: ∀ a, s, r, q, ts, te, (use_spec(r, a, ts, te, q) ∧
enabled(s, a, t)) ∨ (consume_spec(r, a, ts, te, q) ∧
enabled(s, a, t)) ≡ ∃ c, cpr(a,c,t,r)

[The computation for the resource cost point is dis-
cussed later in Axiom 30].

Semantics: the cost point predicate, cpr, is a ground term
with four arities:

• a: activity identity or name of activity.
• c: cost_value of activity at the specified time point.
• t: a specified instance of time.
• r: an identified resource used or consumed by activity,

a.

Example: cpr(assemble_clip_reading_lamp, 120, 75,
nut4)

The above example indicates the resource_cost_point
for the activity, clip_reading_lamp_assembly, is of
cost_value 120 monetary units at time point 75, for the
resource, nut4.

4.2 Cost point of Activity, a, at Time point, t:
cpa(a,c,t)

Definition: The cost point of activity predicate, cpa, spec-
ifies the aggregate cost_value, c, of the activity, a, at time_
point, t, given that the activity, a, uses and/or consumes one
or more resources at the same point in time, t. In other
words, this cost point predicate, cpa, is obtained by the sum-
mation of the cost value argument ci for the resource_cost_-
point predicate, cpr, for all resources used and/or consumed
by the activity, a, upto time point t.

This cost_ point_for_activity definition returns the
summation of all cost values ci over all resources
required by the activity at a specific time point as indi-
cated in the axiom schema:-

Axiom 2: For each activity, a, and ∀ c1, c2, c3, ..., cn, r1,
r2, ... rn, t, ∃ c, cpa(a, c, t) ≡ cpr(a, c1, t, r1) ∧ cpr(a, c2, t,

r2) ∧ cpr(a, c3, t, r3) ∧ ... ∧ cpr(a, cn, t, rn) ∧ c = c1 + c2
+....+ cn

[The computation of the cost point for activity is later
discussed in Axiom 31].

4.3 Taxonomy of Resource Cost Units
In TOVE, we define the basic or primitive cost_value of

consuming or using 1 unit amount of a resource for 1 unit of
time by an activity as the resource cost unit of the resource
for the activity.

As per the status value of the use and/or consume ter-
minal states of the enabling states of an activity, the activ-
ity status may be dormant, executing, suspended,
reExecuting, or completed. Before being completed, an
activity status may iterate through the various status val-
ues. The status of an activity depends on the status of the
resources required by the activity.

In recognition of the above, our taxonomy of resource
cost units consists of committed1_res_cost_unit, enable-
d_res_cost_unit, disenabled_res_cost_unit and reenable-
d_res_cost_unit (see figure 3) where the nomenclature of
the resource cost units are based on the state status values
- committed, enabled, disenabled, reenabled - as was ear-
lier defined in Sec.1.4 :-

FIGURE 3. Taxonomy of Resource Cost Units

Definitions pertaining to the resource cost unit classifi-
cation or taxonomy are as follows:-

• dormant activity, a, requiring a resource, r, has a com-
mitted_res_cost_unit, (v1), linking the resource and
dormant activity through a cost metric, v1, expressed
as $/unit of resource/unit time;

• executing activity, a, requiring a resource, r, has an
enabled_res_cost_unit, (v2), linking the resource and
executing activity through a cost metric, v2, expressed
as $/unit of resource/unit time;

1. Resources may be committed to a dormant activity.

Resource
Cost Unit

committed
_res_cost_

unit

enabled_
res_cost_

unit

disenabled
_res_cost_

unit

reenabled
_res_cost_

unit

• suspended activity, a, requiring a resource, r, has a dis-
enabled_res_cost_unit, (v3), linking the resource and
suspended activity through a cost metric, v3, expressed
as $/unit of resource/unit time;

• reExecuting activity, a, requiring a resource, r, has a
reenabled_res_cost_unit, (v4), linking the resource
and reExecuting activity through a cost metric, v4,
expressed as $/unit of resource/unit time.

We cons ider the above resource cos t un i t
primit ives v1, v2, v3, v4 as being the four cost
a t t r i b u t e s o f t h e u s e a n d c o n s u m e s t a t e s
as soc ia ted wi th each re source spec i fi ed for
an act iv i ty.These resource cost units must be given or
identifiable in the enterprise data model. [To ensure the
completeness of the enterprise data model, refer to the clo-
sure axioms in the Appendix].

4.4 Taxonomy and Axioms for Cost Orders
Within the TOVE enterprise modelling paradigm, there

are four generic and identifiable types of orders for which
activities are performed at any given time point t. An
activity is performed for a specific customer order, an
internal order, a forecast order, or a purchase order. In
other words, an activity, a, at any time point, t, bears a
relationship, viz., has_order, with the object, x, where x
may be a customer order, an internal order, a forecast
order, or a purchase order. Hence, from a cost manage-
ment standpoint, we accordingly classify these order types
in the taxonomy of cost orders as shown in figure 4.

Expressing the definitions for the taxonomy of cost
orders as axioms in first order logic would be as:-

Axiom 3:∀a, x, t, activity(a) ∧ has_order (a,x,t) ⊃ cus-
tomer_cost_order (x,a,t) ≡ customer_order(x,t)

FIGURE 4. Taxonomy of Cost Orders

Axiom 4:∀a,x,t, activity(a) ∧ has_order (a,x,t) ⊃
internal_cost_order (x,a,t) ≡ internal_order(x,t)

Axiom 5:∀a, x, t, activity(a) ∧ has_order (a,x,t) ⊃
forecast_cost_order (x,a,t) ≡ forecast_order(x,t)

purchase_

Cost
Order

customer_ internal_
cost_order cost_order

forecast_
cost_order cost_order

Axiom 6:∀a, x, t, activity(a) ∧ has_order (a,x,t) ⊃
purchase_cost_order (x,a,t) ≡ purchase_order(x,t)

4.5 Activity Cost Taxonomy and Axioms
From the preceding section, it is quite apparent that

our cost ontology thus far has explicitly recognized the
temporal behaviours of an activity and the cost of the
activity that are closely associated with the status value
of the enabling states and activity, together with the cost
attributes of the use and consume terminal states in the
enabling state tree for an activity.

Before an activity is completed, it is quite possible that
the activity status value may have cycled through the dor-
mant, executing, suspended and reExecuting status val-
ues. Hence, considering the taxonomy of resource cost
units, and the temporal nature of activity status values,
our activity cost profile must capture the cost of perform-
ing the activity dependent on its status value and resource
cost unit allocation.

To be consistent and complete with the changing status
of the activity, the temporal behaviour of costs may be
captured through primitive activity cost terms identified
as dormant_act_cost, exec_act_cost, suspended_act_cost,
reExec_act_cost, and complete_act_cost.

Hence, in TOVE, we give explicit recognition to the tem-
poral behaviour of activity cost by defining four primitive
types of activity costs based on the status of the activity
which depends on the status of the resources required by the
activity, viz.,

1. dormant activity cost or dormant_act_cost,

2. executing activity cost or execute_act_cost,

3. suspended activity cost or suspend_act_cost, and

4. reExecuting activity cost or reExec_act_cost.

In general, from the above activity status and activity cost
level profile (figure 5), an activity holds it status value for a
time-period or time-interval with start point t and end point
t’. During the interval (t, t’), the activity requires resource r.
Hence, the cost allocation, c, for that activity during
that interval is computed as the resource cost unit
value, v, multiplied by the length of the time interval,
(t’ - t), for which the activity holds a steady status
value, multiplied by the quantity, q, of resource
required by the activity during the time interval.

FIGURE 5. Resource (State) Status, Activity Status
and Activity Cost Profile with Time

First we will define the intervals associated with the
different values of status of a (resource) state:

Axiom 7: ∀a, s, r, t, t’, committed_interval (a, r, t, t’) ≡
∀t”, t ≤ t” < t’ ⊃ holds (committed (s, a), t”) ∧ ¬ hold-
s(committed(s,a), t’) ∧ holds(committed(s,a), t)

Axiom 8: ∀a, s, r, t, t’, enabled_interval (a, r, t, t’) ≡
∀t”, t ≤ t” < t’ ⊃ holds (enabled (s, a), t”) ∧ ¬ hold-
s(enabled (s, a), t’) ∧ holds(enabled (s, a), t)

Axiom 9: ∀a, s, r, t, t’, disenabled_interval (a, r, t, t’)
≡ ∀t”, t ≤ t” < t’ ⊃ holds (disenabled (s, a), t”) ∧ ¬
holds(disenabled (s,a), t’) ∧ holds(disenabled (s,a), t)

Axiom 10: ∀a, s, r, t, t’, reenabled_interval (a, r, t, t’)
≡ ∀t”, t ≤ t” < t’ ⊃ holds (reenabled (s, a), t”) ∧ ¬
holds(reenabled (s,a), t’) ∧ holds(reenabled (s,a), t)

Next, we compute the resource cost points for an activ-
ity at the endpoints of the status intervals.

Axiom 11: ∀a, r, c,v, t, t’, committed_interval (a, r, t,
t’) ⊃ [committed_res_cost (a, r, c, t’) ≡ committe-
d_res_cost_unit (a, r, q, v) ∧ c = v.(t’ - t).q]

Axiom 12: ∀a, r, c, v, t, t’, enabled_interval (a, r, t, t’)
⊃ [enabled_res_cost (a, r, c,t’) ≡ enabled_res_cost_unit
(a, r, q, v) ∧ c = v.(t’ - t).q]

Axiom 13: ∀a, r, c, t, t’, disenabled_interval (a, r, t, t’)
⊃ [disenabled_res_cost (a, r, c, t’) ≡ disenable-
d_res_cost_unit (a, r, q, v) ∧ c = v.(t’ - t).q]

dormant

executing
suspended

reExecuting

completed

Activity

Time

t2t1 t3 t4 t5 t6Time0

(a)

(b)

(c)

(d)

(e)

(f)

(1)

(2)

(3)

(4) (6)

(5)

Legend: Resource (State) Status with Time
(1) = Resource committed for [0, t1)
(2) = Resource consumed or used for [t1, t2)
(3) = Resource disenabled for [t2, t3)
(4) = Resource reenabled for [t3, t4)
(5) = Resource disenabled for [t4, t5)
(6) = Resource reenabled for [t5, t6)
At time point t6, activity is completed.

Status Value

Legend: Continuously increasing Activity
Cost Level with Time

(a) = dormant_act_cost for [0, t1)
(b) = exec_act_cost for [t1, t2)
(c) = suspended_act_cost for [t2, t3)
(d) = reExec_act_cost for [t3, t4)
(e) = suspended_act_cost for [t4, t5)
(f) = reExec_act_cost for [t5, t6)

Deductions:
completed_act_cost = (a) + (b) + (c) + (d) + (e) + (f)
total_suspended_act_cost = (c) + (e)
total_execute_act_cost = (b) + (d) + (f)

ctivity
ost
evel($)

Axiom 14: ∀a, r, c, t, t’, reenabled_interval (a, t, t’) ⊃
[reenabled_res_cost (a, r, c, t’) ≡ reenabled_res_cost_u-
nit (a, r, q, v) ∧ c = v.(t’ - t).q]

For time points that are during a status interval, the
cost point of a resource at some time point t’ has the same
value as the cost point of the resource at the last time
point t at which the status was changed. In order to
express this, we need to say that the status was changed at
time t and no action occurred between t and t’ that could
change the status.

Hence, if at time t the committed/enabled/disenabled/
reenabled resource cost point is of value c, and the status
of the state for the activity is committed/enabled/disen-
abled/reenabled at time t’, and the status of the state
remains the same respectively between t and t’, then the
resource cost point value, c’, of the activity at t’ is the
closest respective resource cost point value c of time t
plus the cost of the resource used or consumed during the
period (t’-t). This is formalized in Axioms 15, 17,19 and
21 respectively below. These axioms formalize the proce-
dure of computing resource cost point values at t’ as a
cumulative cost upto t’ and are increasing functions of
the time period between t and t’.

On the other hand, for any time point t’ beyond t, the
committed/enabled/disenabled/reeneabled resource cost
point value at t’ is equivalent to the respective cost point
value c at time t if the status of the state is non identical at
t and t’ and no event has occurred to change the status of
the state at t. We therefore formulate the Axioms 16, 18,
20, and 22 respectively below for the resource cost points
of each resource used or consumed by an activity.

 Axioms 15 through 22 are formalized through the
usage of the predicate occursBet (see Appendix for Def-
inition of occursBet) as follows:

Axiom 15: ∀a, r, c, c’, t, t’, committed_res_cost(a, r, c, t)
∧ status(s,a, committed, t’) ∧ ¬ occursBet (commit(s,a), t,
t’) ⊃ [committed_res_cost (a, r, c’, t’) ≡ committe-
d_res_cost_unit (a, r, q, v) ∧ c’ = c+v.(t’ - t).q]

Axiom 16: ∀a, r, c, t, t’, committed_res_cost(a, r, c, t) ∧
¬ status(s, a, committed, t’) ∧ ¬ occursBet (commit(s,a),
t, t’) ⊃ committed_res_cost (a, r, c, t’)

Axiom 17: ∀a, r, c,c’, t, t’, enabled_res_cost(a, r, c, t) ∧
status(s,a,enabled,t’) ∧ ¬ occursBet (enabled(s,a), t, t’) ⊃
[enabled_res_cost (a, r, c’, t’) ≡ enabled_res_cost_unit (a, r,
q, v) ∧ c’ = c+v.(t’ - t).q]

Axiom 18: ∀a, r, c, t, t’, enabled_res_cost(a, r, c, t) ∧ ¬
status(s,a,enabled,t’) ∧ ¬ occursBet (enabled(s,a), t, t’) ⊃
enabled_res_cost (a, r, c, t’)

Axiom 19: ∀a, r, c,c’, t, t’, disenabled_res_cost(a, r, c, t)
∧ status(s, a, disenabled, t’) ∧ ¬ occursBet (disen-
abled(s,a), t, t’) ⊃ [disenabled_res_cost (a, r, c’, t’) ≡ disen-
abled_res_cost_unit (a, r, q, v) ∧ c’ = c+v.(t’ - t).q]

Axiom 20: ∀a, r, c, t, t’, disenabled_res_cost(a, r, c, t) ∧
¬ status(s, a, disenabled, t’) ∧ ¬ occursBet (disenabled
(s,a), t, t’) ⊃ disenabled_res_cost (a, r, c, t’)

Axiom 21: ∀a, r, c,c’, t, t’, reenabled_res_cost(a, r, c, t) ∧
status(s,a,reenabled,t’) ∧ ¬ occursBet (reenabled(s,a), t, t’)
⊃ [reenabled_res_cost (a, r, c’, t’) ≡ reenabled_res_cost_u-
nit (a, r, q, v) ∧ c’ = c+v.(t’ - t).q]

Axiom 22: ∀a, r, c, t, t’, reenabled_res_cost(a, r, c, t) ∧ ¬
status(s,a,reenabled,t’) ∧ ¬ occursBet (reenabled(s,a), t, t’)
⊃ [reenabled_res_cost (a, r, c, t’)

A resource may be disenabled and reenabled several
times before an activity is completed. Hence, there may be
multiple intervals over which a state may be disenabled
and reenabled, and we must aggregate the costs for each of
these intervals to compute the total cost for the disenabled
and reenabled status of the states. For this, we formulate
the predicate total_disenabled_res_cost and total_reen-
abled_res_cost to aggregate the costs upto time point t as
follows:-

Axiom 23: ∀r, a, t, c’, c1, c2,..ck, t1, t2,...tn,

total_disenabled_res_cost(a, r, c’,t) ≡ [disenabled_inter-
val (a, r, t1,t2) ∧ disenabled_interval(a, r, t3, t4) ∧
.. ∧ disenabled_interval (a,
r, tn-1,tn)] ∧ [disenabled_res_ cost (a, r, c1, t2) ∧ disenable-
d_res_cost (a, r, c2, t4) ∧ ∧ disenabled_res_cost(a, r,
ck, tn)] ∧ [t1< t2<<tn ≤ t] ∧ c’=c1 + c2 + + cn

Axiom 24: ∀r, a, t, c’, c1, c2,..ck, t1, t2,...tn,

total_reenabled_res_cost(a,r,c’,t) ≡ [reenabled_interval
(a, r, t1 , t2) ∧ reenabled_interval (a, r, t3 , t4) ∧
.. ∧ reenabled_interval(a, r, tn-1,
tn)] ∧ [reenabled_res_cost (a, r, c1, t2) ∧ reenable_res_-
cost(a, r, c2, t4) ∧∧ reenabled_res_cost(a, r, ck, tn)] ∧
[t1< t2<< tn ≤ t] ∧ c’= c1 + c2 + + cn

However, a resource is committed and enabled only
once to an activity before the activity is completed. Hence,
the total_ committed_res_cost and the total_enable-
d_res_cost for an activity at time point t’ is equivalent to
the committed_res_cost at t’ and the enabled_res_cost at t’
respectively.

Axiom 25: ∀ r, a, t, c, total_committed_res_cost(a, r, c,
t) ≡ committed_res_cost(a, r, c, t)

Axiom 26: ∀ r, a, t, c, total_enabled_res_cost(a, r, c, t)
≡ enabled_res_cost(a, r, c, t)

An activity may use or consume n different resources.
The cost of an activity being dormant, executing, sus-
pended and reExecuting at time point t is computed by
the aggregation of the total_committed_res_cost, the
total_enabled_res_cost, the total_disenabled_res_cost,
and the total_reenabled_res_cost at time point t respec-
tively for each of the n resources that is used or con-
sumed by the activity. We formalize these computations
as per the following axioms:-

Axiom 27: For each activity, a, we have an axiom of the
form:

∀ c, c’,r1,r2,..rn,t, dormant_act_cost (a,c’,t) ≡ [total_-
committed_res_cost(a,r1,c1,t) ∧ total_committed_res_cos-
t(a,r2,c2,t)∧total_committed_res_cost(a,r3,c3,t)∧....∧total_
committed_res_cost(a,rn,cn,t)] ∧ c’=c1 + c2 + + cn

Axiom 28: For each activity, a, we have an axiom of the
form:

∀ c, c’,r1,r2,..rn,t, execute_act_cost (a,c’,t) ≡ [total_en-
abled_res_cost(a,r1,c1,t) ∧ total_enabled_res_cost
(a,r2,c2,t) ∧ total_enabled_res_cost(a,r3,c3,t) ∧..............∧
total_enabled_res_cost(a,rn,cn,t)] ∧ c’ = c1 + c2 + + cn

Axiom 29: For each activity, a, we have an axiom of the
form:

∀ c, c’,r1,r2,..rn,t, suspend_act_cost (a,c’,t) ≡ [total_dis-
enabled_res_cost(a,r1,c1,t) ∧ total_disenabled_res_cost
(a,r2,c2,t) ∧ total_disenabled_res_cost(a,r3,c3,t)
∧..............∧ total_disenabled_res_cost(a,rn,cn,t)] ∧ c’ = c1
+ c2 + + cn

Axiom 30: For each activity, a, we have an axiom of the
form:

∀ c, c’,r1,r2,..rn,t, reExecute_act_cost (a,c’,t) ≡ [total_-
reenabled_res_cost(a,r1,c1,t) ∧ total_reenabled_res_cost
(a,r2,c2,t) ∧ total_reenabled_res_cost(a,r3,c3 ,t)
∧..............∧ total_enabled_res_cost(a,rn,cn,t)] ∧ c’ = c1 +
c2 + + cn

The cost point of an activity, cpa(a,c,t), at time t may
be obtained as the sum of the dormant, execute, sus-
pended and reExecute activity costs for the activity at the
time t. Hence, the computation for the cost point value, c,
for the activity, a, at time point, t, may be axiomitized as
follows:-

Axiom 31: ∀ a, c1, c2, c3, c4, c’, t,

cpa(a,c’,t) ≡ total_dormant_act_cost(a, c1, t) ∧ total_-
execute_act_cost(a, c2, t) ∧ total_suspend_act_cost(a, c3, t)
∧ total_reExec_act_cost(a, c4, t) ∧ [c’ = c1 + c2 + c3 +c4]

The resource cost point of activity, a, for resource,
r, at time point, t, cpr(a, c, t, r) is the sum of the total_-
committed_res_cost, total_enabled_res_cost, total_d-
isenabled_res_cost and total_reenabled_res_cost at
time point, t.

Axiom 32: ∀ a, c, c1, c2, c3, c4, t,

cpr(a,c,t,r) ≡ total_committed_res_cost (a,r,c1,t) ∧
total_enabled_res_cost (a,r,c2,t) ∧ total_disenable-
d_res_cost (a,r,c3,t) ∧ total_reenabled_res_cost(a,r,c4,t) ∧
[c’ = c1 + c2 + c3 +c4]

Further the cost point of an activity, a, at time point, t,
may also be achieved as the aggregation of all resource
cost points of all resources used or consumed by activity,
a. Hence, as was stated in Axiom 2, we have

Axiom 2: For each activity, a, and ∀ c1, c2, c3, ..., cn, r1, r2,
... rn, t,

∃ c, cpa(a, c, t) ≡ cpr(a, c1, t, r1) ∧ cpr(a, c2, t, r2) ∧
cpr(a, c3, t, r3) ∧ ... ∧ cpr(a, cn, t, rn) ∧ c = c1 + c2 +....+
cn

[Note: Axiom 2 and Axiom 31 do give equivalent cost
point value, c, for cpa(a,c,t)]

4.6 Activity Costs for Cost Orders
As stated in Sec. 4.4, we recognize four generic and

identifiable types of cost orders for which activities are
performed. These are the customer, internal, forecast and
purchase cost orders. It is reasonable to assign the costs
of all activities to the cost order for which the activi-
ties were performed.

Hence, we formulate the predicate, cpo, as the cost
point of cost order, x, at time point, t, as the aggregate
cost of all activities upto time point t for the cost order
x.

Therefore, we axiomatize cpo(c’, x, t) as the aggregation
of cpa(a, c, t), the cost point of activities upto time point t as
follows:-

Axiom 33: For each cost order, x, and ∀ c’, a1,
a2,.......,an, c1, c2,......,cn, t1, t2,....,tn, t,

cpo(c’, x, t) ≡ [has_cost_order(x,a1,t1) ∧ cpa(a1,c1,t1)]
∧ [has_cost_order(x,a2,t2) ∧ cpa(a2,c2,t2)] ∧....... ∧
[has_cost_order(x,an,tn) ∧ cpa(an,cn,tn)] ∧ [t1< t2<....< tn≤t] ∧ [c = c1 + c2 + c3 +.......+cn]

5.0 Applying cpr(a,c,t,r), cpa(a,c,t) and
cpo(c,x,t) for Cost Management

The axioms developed thus far enable us to compute
and deduce costs for an instance of an activity, a, and an
instance of an order, x, or a specific order, x. Cost compu-
tations pertaining to an instance of an activity, a, and an
instance of an order, x, have been achieved through our
micro-theory (set of axioms) leading to the formulation
of cpa(a, c, t) and cpo(c, x, t) respectively. Hence, thus
far, we are able to provide answers to some of the follow-
ing common sense queries:-

1. What is the instantaneous and cumulative cost of a
resource used in an activity a at time t?

2. What is the instantaneous and cumulative cost of an
activity a at time t?

3. What is the instantaneous and cumulative cost of an
order o at time t?

However, to enhance the application of our core cost
ontology and micro-theory, we must extend our micro-
theory of costs towards providing solutions to some of
the further common sense queries put forth by enterprises
wishing to achieve effective activity-based cost manage-
ment:-

4. What is the cost of each subClass activity, ai, when
ai has activity instances, aij’s?

5. What is the cost of Class_ Activity, a’ix, (eg. the
class activity, Distribution) given that a’ix (viz., Distri-
bution) has subClass activities, ai’s? (eg. Order-Pick-
ing, Palletizing, Material Handling, Shipping)? [Note:
the subClass activity, Material Handling, may have
activity instances like Hand Pallet Truck Handling,
Fork-Lift Truck Handling, and Conveyorized Handling].

6. What is the cost of Cost_Order_Class, xc, (eg. xc
may include all instances of orders that are fulfilled for
the export sector or the electronic industry sector) given
that xc includes cost order instances, xci’s ?

Computing and deducing costs for answers to que-
ries 4, 5 and 6 involve the aggregation of costs at vari-
ous activity levels (viz., activity instance, subClass activity,
and Class_Activity) and order levels (viz., cost order
instance, and Cost_Order_Class). Finding answers to such
queries may be essential to achieve strategic cost man-
agement for multi-national, multi-subsidiary enterprises
established or being established for the global market
under trade alliances such as NAFTA and the European
Union (EU). Hence, though queries 4, 5, and 6 are not
meant to be totally exhaustive and mutually exclusive,

they serve as examples that strongly motivate the need to
extend our cost ontology and micro-theory that involve the
aggregation of costs through the various levels of activity
and cost_order representations.

Figure 6 illustrates that activity classes, a’1, a’2, a’3,....
a’n has_cost_order_class, xc, upto time point, t. Activities
a1, a2, a3,......, ak are subClass activities of Class_Activity
of a’1; and ai1, ai2, ai3,, aim are instances_of ai. Each
instance, aij, of activity, ai, uses/consumes resources ri1,
ri2, ri3,......,rip.

5.1 Computing cost point of subClass activity, ai
From Axiom 32, for each resource, rip, required by aij,

the resource cost point, cpr, is:-

∀ a, r, c’, c1, c2, c3, c4, t,

cpr(a,c’, t,r) ≡ total_committed_res_cost (a,r,c1,t) ∧
total_enabled_res_cost(a,r,c2, t) ∧ total_disenabled_res_cost
(a,r,c3, t) ∧ total_reenabled_res_cost(a,r,c4, t) ∧ [c’ = c1 +
c2 + c3 +c4]

From Axiom 2, the cost point of activity, aij, is the
aggregation of cost point of resources, rip:-

For each activity instance, aij, and ∀ c, c1, c2, c3, ..., cp,
ri1, ri2, ... rip, t,

cpa(aij, c, t) ≡ cpr(a, c1, t, ri1) ∧ cpr(a, c2, t, ri2) ∧ cpr(a,
c3, t, ri3) ∧ ... ∧ cpr(a, cp, t, rip) ∧ [c = c1 + c2 +....+ cp]

5.2 Computing cost point of subClass activity, ai
The cost point of a subClass activity, ai, is the aggrega-

tion of the cost point of each activity instance, aij. This
computation may be axiomitized with the use of the distin-
guishing predicate, cpa_subClass, as follows:-

Axiom 34: For each subClass activity, ai, and ∀ ci, t, ai1,
ai2,.......,aim, ci1, ci2,......,cim,

instance_of(ai,ai1) ∧ instance_of(ai,ai2) ∧ instance_of
(ai,ai3) ∧ ∧ instance_of(ai,aim) ⊃ cpa_subClass
(ci,ai,t) ≡ cpa(ai1,ci1,t) ∧ cpa(ai2,ci2,t) ∧ cpa(ai3,ci3,t) ∧
............. ∧ cpa(aim,cim,t) ∧ [ci = ci1 + ci2 + ci3 + +
cim]

5.3 Computing cost point of Class Activity, a’ix,
required to satisfy cost order, x

The cost point of Class Activity, a’ix, which is the ith
class activity for cost order, x, is the aggregation of cost
point of each subClass activity, ai. This procedure is for-
malized as follows using the distinguishing predicate,
cpa_Class, to indicate the cost point of an activity class:-

Axiom 35: For each Class activity, a’ix, and ∀ c’i, t, a1,
a2,.......,ak, c1, c2,......,ck,

subClass_of(a’ix,a1) ∧ subClass_of(a’ix,a2) ∧
............................. ∧ subClass_of(a’ix, ak) ⊃ cpa_Class
(c’1,a’ix,t) ≡ cpa(a1,c1,t) ∧ cpa(a2,c2,t) ∧ cpa(a3,c3,t) ∧
.................. ∧ cpa(ak,ck,t) ∧ [c’i = c1 + c2 + c3 + + ck]

FIGURE 6. Relationships upto time point t amongst
Cost Order Classes, Activity Classes,
Activity Instances and Resources

5.4 Computing cost point of cost order, x
Given that the process plan for an order, x, has speci-

fied class activities, a’1x, a’2x,....,a’nx, the cost point of x
is the aggregation of the cost point of each class activity
specified in the process plan of x. Thus, applying Axiom
33, we have the cost point of an order (or an instance of
an order) as:-

For each cost order, x, and ∀ c’x, a’1x, a’2x,.......,a’nx,
c’1x, c’2x,......,c’nx, t1, t2,....,tn, t,

cpo(c’x, x, t) ≡ [has_cost_order(x,a’1x,t1) ∧ cpa
(a’1x,c’1x,t1)] ∧ [has_cost_order(x,a’2x,t2) ∧ cpa
(a’2x,c’2x,t2)] ∧ ∧ [has_cost_order(x,a’nx,tn) ∧
cpa(a’nx,c’nx,tn)] ∧ [t1< t2<....< tn ≤t] ∧ [c’x = c’1x + c’2x
+ c’3x +.......+c’nx]

Cost_Order_Class xc

Cost_Order xc1

has_cost_order

Cost_Order xci

cost_order instance_of

Cost_Order xch

cost_order instance_of
cost_order instance_of

has_cost_order

Class_Activity a’1x Class_Activity a’ix

has_cost_order

subClass_of
activity a1

subClass_of
activity a2

subClass_of

subClass_of

activity a3

activity ai-1

subClass_of
activity ai

subClass_of
activity ak

instance_of

Class_Activity a’nx

act ai1

act ai2

act ai3

act aij

act aim

consume

use use consume

resource ri1 resource resource resourceri2 ri3 rip

5.5 Computing cost point of cost order class, xc
As illustrated in figure 6, cost order class, xc, may be

comprised of h number of cost order instances, xc1, xc2,
........ xci,xch. Hence, each instance, xci, is a cost_or-
der_instance_of cost order class, xc. The costing of cost
order class, xc, is the aggregation of the cost order
instances, xci’s.To formalize the aggregation of the cost
order instances for the cost point of xc, we use the distin-
guishing predicate, cpo_class, to indicate the cost point
of cost order class, xc as follows:-

Axiom 36:- For each Cost Order Class, xc, and ∀ cxc, t,
xc1, xc2,, xch, cx1, cx2,, cxh,

cost_order_instance_of(xc,xc1) ∧ cost_order_instan-
ce_of(xc,xc2) ∧ ... ∧ cost_or-
der_instance_of(xc,xch) ⊃ cpo_Class(xc,cxc,t) ≡ cpo(cx1,
xc1, t) ∧ cpo(cx2, xc2, t) ∧ cpo(cx3, xc3, t) ∧ ∧
cpo(cxh, xch, t) ∧ [cxc = cx1 + cx2 + cx3 +.......+cxh]

6.0 Application of the TOVE Cost
Ontology towards Activity Based
Costing (ABC) System.

It is proposed that the usage and implementation of the
foregoing core cost ontology in TOVE will enable com-
panies to build an ABC system within the TOVE enter-
prise modelling paradigm, so as to provide enterprises the
urgently needed “critical element to their global success -
strategic management accounting” [FOCUS, Strategic
Management Accounting Offers American Manufactur-
ersA Strong Global Competitive Advantage, National
Center for Manufacturing Sciences, Sept. 1993].

6.1 Conventional (Traditional) Cost
Accounting Systems versus ABC Systems
[Cooper 90]

Conventional cost accounting systems focus on units
of particular products/services. Costs are allocated or
“traced” to a product/service because each unit of the
product or service is assumed to consume resources. Tradi-
tional allocation bases of resources to these units thus
measure only attributes of a unit, eg. the number of direct
labour hours, machine hours, or material costs consumed
in making the product or providing the service. In
accountancy terms, these allocation bases that measure
characteristics of the product or service unit are called
unit-level allocation bases.

However, in sharp contrast to the above, ABC systems
focus on the activities performed to produce products or
on the activities to provide a service. Costs are traced

from activities to products/services based on each prod-
uct’s or each service’s consumption of the activities.
Hence, ABC acknowledges that products or services do not
directly use up resources, but, instead, use up activities.
Consequently, the allocation bases, or “cost drivers”,
used in ABC are therefore measures of the activities per-
formed.

6.2 Mapping the Conceptualization of ABC
with the Cost Ontology [refer figure 7]

Resources are considered as the necessary require-
ments to accomplish or to perform an activity [Fadel &
Fox 94]. In that sense, the property of the resource is
dependent on the activity to be performed. Some exam-
ples of resources are machines, computers, materials,
tools, humans, floor space, electricity, etc. However, from
a cost perspective, resources are the sources of cost and are
viewed as economic elements directed to the performance of
activities.

The resource drivers are “the links between the
resources and activities. They take a cost from the gen-
eral ledger and assign it to the activities”[Turney 92]. As
many resources may be consumed or used by an activity,
an activity may have several resource drivers. Looking
for resource drivers, which are transaction-related “cost
drivers”, forms the first stage in cost management that
helps management discover what contributes to costs
[Stoffel 92]. Our cost ontology enables the mapping of
resource drivers to our resource cost units; whereas, the
resource cost assignment of ABC is achieved through the
cost micro-theory for the resource cost point (cpr) of an
activity.

In the ABC context, activity is considered “a combina-
tion of people, technology, raw materials, methods, and
environment that produces a given product or service”[-
Brimson 91]. The development of our cost ontology cen-
ters around the more precise and complete representation
of the activity cluster.

In ABC, the reason for performing an activity is con-
sidered a cost object [Turney 92, ABC Glossary for
CAM-I, Arlington, Texas]. A cost object is the reason
why work is performed by an enterprise. Products and
customers are reasons for performing activities. Cost
objects include products, services, customers, projects
and contracts.The cost object is the terminal point to
which cost is traced. Consequently, the cost traced to
each cost object will reflect the cost of the activities used
by that cost object. Our taxonomy of cost orders is a map-
ping of cost objects in ABC.

In the ABC concept, each activity is traced to the cost
object via an activity driver. An activity driver is a measure
of the consumption or usage of an activity by a cost object .
For example, the number of hours devoted by the design
engineers to design a product may be considered as the
activity driver for the engineering design activity.

FIGURE 7. Mapping the Conceptualization* of ABC
(left side) with the Cost Ontology (right
side)

ABC assigns the cost of activities to cost objects based
on activity drivers that accurately measure consumption or
usage of the activity. Cost objects are costed accurately
when activity drivers measure the use of activities directly
or correlate closely with their use. Hence, for the purpose
of activity cost assignment to a cost object, the activity
driver is used to assign resources from the activities to the
cost objects. Identifying the most appropriate activity
driver, which is also considered a transaction-related “cost
driver”, for an activity consumed by a cost object, forms
the second stage of cost allocation in ABC that helps man-
agement discover what contributes to cost. Our representa-
tion of an activity cluster, together with the use or
consume specifications of resources and the computations
for the resource cost point of an activity, enable us to com-
pute the cost point of an activity (cpa) and the cost point of
a cost order (cpo) through the precise and complete repre-

Resource Cost

RESOURCES

ACTIVITY

COST

Cost Point of

RESOURCERESOURCE
DRIVERS COST UNITS

CLUSTER

Cost Point of

Order (cpo)

ACTIVITY
INSTANCES

ACTIVITY
DRIVERS

Activity (cpa)

Point (cpr)

ORDERS

*Based on [Turney 92] & [Turney 92]

Resource Cost

RESOURCES

ACTIVITY

Assignment

Assignment
Activity Cost

COST
OBJECT

ABC Cost Ontology

sentation of an activity instance. Hence, an activity
instance in our cost ontology serves the purpose of assign-
ing activity costs to an instance of a cost order just as an
activity driver in ABC serves the purpose of activity cost
assignment to a cost object.

In summary, the conceptualization of ABC provides a
framework to providing cost and operational information
about the work carried on by the enterprise to be mod-
elled. From the enterprise modelling perspective, it
advantageously encompasses the following building
blocks of the enterprise for their indicated purposes:-

• Resources for Resource Management,
• Resource Drivers for Cost Management and Business

Process Re-design,
• Activities for Activity Management and Business

Process Engineering,
• Activity Drivers for Cost Management and Business

Process Re-design,
• Cost Objects for Strategic Management of the enter-

prise.

Therefore, the ABC framework of cost management
for enterprise modelling points directly to profit opportu-
nities by revealing the links from resource consumption
to activities via resource drivers, and from activities to
cost objects via activity drivers [Cooper & Kaplan 91].

The mapping of the ABC conceptualization to our
developed cost ontology and micro-theory is evidenced
by the following:-

1. Resource Drivers of ABC to our committed_res_cos-
t_unit, suspend_res_cost_unit, execute_res_cost_u-
nit, reExec_res_cost_unit;

2. Cost Objects of ABC to our Cost Orders in TOVE;

3. Activity Costs of ABC to our temporal and traceable
dormant_act_cost, execute_act_cost, suspended_act_-
cost, reExec_act_cost;

4. The assignment of activity costs to instances of cost
orders through the developed micro-theory involving
resource cost point (cpr), cost point of activity (cpa)
and cost point of order (cpo).

5. The aggregation of activity costs for a Class Activity
and Cost Order Class through the extension of the
cost ontology and micro-theory to include distin-
guishing predicates, cpa_subClass, cpa_Class, and
cpo_Class, for the activity cost computations of cost
point of subClass activity, cost point of Class Activity
and cost point of Cost Order Class respectively.

7.0 Conclusions
This paper has described a core cost ontology and

micro-theory of costing for enterprise modelling that
spans the knowledge representation of activity, status of
activity, time, causality, and resources. It has shown the
mapping of the ABC concept to our cost ontology; and
has put forth a cost micro-theory that makes it possible to
reason, deduce and compute activity based costs for the
operations of any enterprise. This would not only make
possible the effective management of resources and
activities towards an enterprise satisfying its clients, but
would also provide an evaluation costing tool for busi-
ness process design or re-design. Hence, our develop-
ment should be considered a contribution towards
fulfilling the urgent need of formalizing Activity-Based
Costing (ABC) for purposes of implementation and usage
in enterprises so that enterprises may attain global suc-
cess through strategic management accounting.

The computations of activity based costs have been
premised on the assumption that resource cost units are
known or given for the enterprise modelled. The body of
knowledge as to what contributes to the make up of
resource cost units for an enterprise has not been defini-
tively put forth. Hence, directions for future research
should include the theory and body of knowledge to
enable an enterprise to define and/or to deduce its
resource cost units.

8.0 Appendix

8.1 Closure Axioms
Depending on the status value of the activity, each rep-

resented activity of a particular enterprise may require
various resources. Hence, from a cost perspective, the
following closure axioms expressed in first order logic
are relevant to the particular enterprise being modelled so
as to ensure that the resource cost units must be inputs as
part of the data model that links each resource with each
activity for the computations and deductions of activity
costs towards the determination of resource cost points
(cpr) of an activity, the cost point of an activity (cpa), and
the cost point of an order (cpo).

Closure Axiom 1: ∀a, r, q, v,

dorm_res_cost_unit(a,r,q,v) ≡
(a = activity_1 ∧ r = resource_11 ∧ q = qty_11 ∧ v =
value_11) ∨ (a = activity_1 ∧ r = resource_12 ∧ q =
qty_12 ∧ v = value_12) ∨ (a = activity_1 ∧ r =
r e sou rce_13 ∧ q=q ty_13 ∧ v = va lue_13)
∨............∨ (a = activity_1 ∧ r = resource_1p ∧ q=

qty_1p ∧ v= value_1p) ∨...........................∨(a=
activity_n ∧ r = resource_n1 ∧ q = qty_n1 ∧ v = val-
ue_n1) ∨ (a = activity_n ∧ r = resource_n2 ∧ q =
qty_n2 ∧ v = value_n2) ∨ (a = activity_n ∧ r =
r e sou rce_n3 ∧ q = q ty_n3 ∧ v = va lue_n3)
∨................∨ (a = activity_n ∧ r = resource_ny ∧
q= qty_ny ∧ v = value_ny),

where n enterprise activities modelled, activity_1
requires p different resources and has commited resource
cost unit values value_11, value_12, value_13,... val-
ue_1p, etc.,respectively and activity_n requires y differ-
ent resources and has y committed resource cost unit
values value_n1, value_n2, value_n3, value_ny.

Closure Axiom 2: ∀a, r, q, v,

exec_res_cost_unit(a,r,q,v) ≡
(a = activity_1 ∧ r = resource_11 ∧ q = qty_11 ∧ v=
value_11’) ∨ (a = activity_1 ∧ r = resource_12 ∧ q =
qty_12 ∧ v=value_12’) ∨ (a = activity_1 ∧ r =
r e sou rce_13 ∧ q=q ty_13 ∧ v= va lu e_13 ’)
∨.............∨ (a = activity_1 ∧ r = resource_1p ∧ q =
qty_1p ∧ v = value_1p’) ∨........................∨ (a=
activity_n ∧ r = resource_n1 ∧ q = qty_n1 ∧ v = val-
ue_n1’) ∨ (a = activity_n ∧ r = resource_n2 ∧ q=qty_n2
∧ v = value_n2’) ∨(a=activity_n ∧ r = resource_n3 ∧ q
= qty_n3∧v=value_n3’)∨...............∨ (a = activity_n
∧ r = resource_ny ∧ q= qty_ny ∧ v = value_ny’) ,

where n enterprise activities modelled, activity_1
requires p different resources and has p exececute
resource cost unit values value_11’, value_12’,
value_13’,... value_1p’, etc., respectively and activity_n
requires y different resources and has y resource cost unit
values value_n1’, value_n2’, value_n3’, value_ny’.

Similarly,

Closure Axiom 3: ∀a, r, q, v,

 suspend_res_cost_unit(a,r,q,v) ≡
(a = activity_1 ∧ r = resource_11 ∧ q = qty_11 ∧ v=
value_11”) ∨ (a = activity_1 ∧ r = resource_12 ∧ q =
qty_12 ∧ v=value_12”) ∨ (a = activity_1 ∧ r =
r e sou rce_13 ∧ q=q ty_13∧ v = va lue_13”)
∨.............∨ (a = activity_1 ∧ r = resource_1p ∧ q =
qty_np ∧ v = value_1p”) ∨..............................∨
(a = activity_n ∧ r = resource_n1 ∧ q = qty_n1 ∧ v =
value_n1”) ∨ (a = activity_n ∧ r = resource_n2 ∧
q=qty_n2 ∧ v= value_n2”) ∨(a=activity_n ∧ r =
resource_n3 ∧ q = q ty_n3 ∧ v = va lue_n3”)
∨...............∨ (a = activity_n ∧ r = resource_ny ∧ q=
qty_ny ∧ v = value_ny”) ;

Closure Axiom 4: ∀a, r, q, v,

reExec_res_cost_unit (a,r,q,v) ≡
(a = activity_1 ∧ r = resource_11 ∧ q = qty_11 ∧ v=
value_11’’’) ∨ (a = activity_1 ∧ r = resource_12 ∧ q =
qty_12 ∧ v=value_12’’’) ∨ (a = activity_1 ∧ r =
r e sou rce_13 ∧ q=q ty_13∧ v=va lue_13 ’’’)
∨...............∨ (a = activity_1 ∧ r = resource_1p ∧ q =
qty_np ∧ v = value_1p’’’)∨..............................∨
(a = activity_n ∧ r = resource_n1 ∧ q = qty_n1 ∧ v = val-
ue_n1’’’) ∨ (a = activity_n ∧ r = resource_n2 ∧
q=qty_n2 ∧ v= value_n2’’’) ∨(a=activity_n ∧ r =
resource_n3 ∧ q = q ty_n3 ∧ v = va lue_n3’’’)
∨...............∨ (a = activity_n ∧ r = resource_ny ∧ q=
qty_ny ∧ v = value_ny’’’)

8.2 Definition of occursBet
The predicate occursBet is used to represent the fact

that an action occurs between two time points t and t’.

Axioms 16, 17, 18, and 19 make use of the negation of
the predicate occurBet to expressly state that, if no action
occurs between t and t’, and the resource cost point at t has
value c, then the resource cost point at t’ also has value c
since no action has occured between t and t’.

9.0 Acknowledgements
[This research is supported, in part, by The Natural Sci-

ence and Engineering Research Council, Carnegie Group
Inc., Digital Equipment Corp., Micro Electronics and
Computer Research Corp., Quintus Corp., and Spar Aero-
space.]

10.0 References
1. [Allen 84] Allen, J.F. Towards a General Theory of

Action and Time. Artificial Intelligence. 23(2):123-154,
1984.

2. [Berliner & Brimson 88] Berliner, Callie & Brimson,
James A., Cost Management for Today’s Advanced Man-
ufacturing: the CAM-I conceptual design, Free Press:
New York, 1988.

3. [Brimson 91] Brimson, James A., Activity Account-
ing: an activity-based costing approach, John Wiley &
Sons, Inc., 1991.

4. [Cooper 90] Cooper, Robin, ABC: A NEED, NOT AN
OPTION, Accountancy, pp. 86-88, September, 1990.

5. [Cooper & Kaplan 91] Cooper, Robin & Kaplan, Rob-
ert S., Profit Priorities from Activity-Based Costing,

Harvard Business Review, pp.130-135, May-June,
1991.

6. [DoD 93] The Office of the Director of Defense Infor-
mation (no author), The DoD Enterprise Model,
Office of the Secretary of Defense, Washington D.C.,
USA, February 16, 1993.

7. [ESPRIT 91] ESPRIT Consortium AMICE (no
author), Open System Architecture for CIM, CIM-
OSA AD 1.0, Architecture Description, (ESPRIT -
Project 688, Project 2422, Project 5288), 2 Boulevard
de la Woluwe Bte. 8, B-1150 Brussels, Belgium,
1991.

8. [Fadel et al 93] Fadel, Fadi George, Fox, Mark S.,
Gruninger, M., A Resource Ontology for Enterprise
Modelling, Submitted paper for the Knowledge Rep-
resentation (KR) Conference, 1994.

9. [Fadel & Fox 94] Fadel, Fadi George and Fox, Mark
S., A Resource Ontology for Enterprise Modelling,
Submitted paper for the Third Industrial Engineering
Conference, 1994.

10. [Fox & Tenenbaum 90] Fox, M.S., and Tenenbaum,
J.M., Proceedings of the DARPA Knowledge Sharing
Workshop, Santa Barbara CA, 1990.

11. [Fox et al 93] Fox, Mark S., Chionglo, John F., Fadel,
Fadi G., Towards Common Sense Modelling of an
Enterprise, Proceedings of the Second Industrial
Engineering Research Conference, 1993.

12. [Hammer 90] Hammer, Michael, Reengineering
Work: Don’t Automate, Obliterate, Harvard Business
Review, July-August, 1990.

13. [Morrow & Hazell 92] Morrow, Michael & Hazell,
Martin, Activity Mapping For Business Process
Redesign, Management Accounting, pp. 36-38, Feb-
ruary, 1992.

14. [Motro 93] Motro, Amihai, Responding with Knowl-
edge, International Journal of Expert Systems, Vol. 6,
No.1, pp. 121-138, 1993.

15. [Sathi 85] Sathi, A., Fox, M.S., and Greenberg, M.,
Representation of Activity Knolwedge for Project
Management, IEEE Transactions on Pattern Analysis
and Machine Intelligence. PAMI-7(5):531-552, Sep-
tember, 1985.

16. [Scheer 89] Scheer, August-Wilhelm, Enterprise-
Wide Data Modelling, Springer-Verlag, 1989.

17. [Stoffel 92] Stoffel, Thomas J., Activity-based Cost-
ing: The Competitive Advantage for the 1990s, The
Journal of Applied Manufacturing Systems, pp. 58-
63, Winter 1992.

18. [Tham 93] Tham, K. Donald, Cost Perspectives in
Enterprise Modelling, A working paper for the Enter-

prise Engineering Laboratory under the directorship
of Mark S. Fox, University of Toronto, August 31,
1993.

19. [TOVE 92] Fox, Mark S., Chionglo, John F., Fadel,
Fadi G., The TOronto Virtual Enterprise model,
Enterprise Integration Laboratory, University of Tor-
onto, 1993.

20. [Turney 92] Turney, Peter B.B., Common Cents: The
ABC Performance Breakthrough (How to succeed
with activity-based costing), Portland, OR: Cost
Technology, 1992.

21. [Turney 92] Turney, Peter B.B., Activity-based Man-
agement, The Journal of Applied Manufacturing Sys-
tems, pp. 29-36, Winter 1992.

22. [Williams 92] Williams, Theodore J., The Purdue
Enterprise Reference Architecture, Purdue Laboratory
for Applied Industrial Control, Purdue University,
West Lafayette, Indiana 47907, USA, March 16,
1992.

