
BT Technol J Vol 17 No 4 October 1999

131

An ontology for quality management — enabling quality
problem identification and tracing

H M Kim, M S Fox and M Grüninger

The TOVE Quality Ontology-VB is the formal representation (using First-order Logic) of terms, relationships, attributes,
and axioms about quality which are generic beyond any specific quality domain. The assumption that quality is
‘conformance to requirements’ is used to decompose the quality domain into domains of measurement, identification, and
traceability for further exploration; the TOVE Quality Ontology-VB is comprised of ontologies of these domains. An
ontological engineering methodology comprised of motivating scenario, scope, and competency question statements, data
model and axiom construction, and competency question/answer visualisation is demonstrated. The methodology is applied
to develop the TOVE Traceability Ontology-VB. This ontology’s representations are used to construct quality control
applications enabling quality problem identification and tracing. They also enforce the properties of an entity that make it
traceable — a novel and useful feature for quality control applications.

1. Introduction

• provide a shared terminology,

• define precise and unambiguous semantics for the
enterprise [2].

Thus the TOVE Quality Ontology-VB is generic to
satisfy the first goal, and formal to satisfy the second.

According to Godfrey [3], the need for an organisation
to better manage information about quality will become

more emphasised with increasing advances in information
technology. Since the TOVE Ontologies project builds
constructs for all strata of knowledge representation [4] —
i.e. implementation, logical, conceptual, generic, and
application — the TOVE Quality Ontology-VB, used with
the other TOVE ontologies, provides a comprehensive and
integrated set of representations with which sophisticated,
deductive decision-making can be made.

The TOVE Quality Ontology-VB is used to support
decision-making because it provides representations needed
to construct enterprise models for quality management.
Enterprise models are information systems tools used for
enterprise design, analysis, and operations. For design and
analysis for example, the TOVE Quality Ontology-VB
terms, relations, and attributes are instantiated to construct a
populated model of a given enterprise’s inspection process.
Ontology axioms are then used to deduce additional facts
about the enterprise. Terms, relations, and attributes
represent the vocabulary for posing queries upon the model,
and the axioms represent the semantics to answer these
queries.

Given TOVE ontologies and a sufficiently populated
enterprise model, it is possible to repeatedly pose queries
and analyse them to perform enterprise analysis and design
tasks such as:

• determining which products often have quality
problems,

Quali ty has become a corporate cliché in the business
world, but as with most clichés, the term ‘quality’ is

more anecdotally and less formally defined. Quality gurus
like Juran and Deming have espoused the importance of
quality from informal, experiential and philosophical
perspectives. Quality tools, such as statistical quality
control (SQC) and quality function deployment (QFD), are
defined with more rigour-mathematics for the former, and
rules for building the ‘House of Quality’ [1] for the latter —
but only relate to a specific domain of quality. ISO 9000 and
Baldridge Awards do address the quality domain from both
formal and generic views, as these documents specify
guidelines or requirements for an acceptable or excellent
quality level for a generic company. The TOVE Quality
Ontology, Version Beta (TOVE Quality Ontology-VB)1

endeavours to be an even more formal representation of
terms, relationships, attributes, and axioms about quality.
Yet these representations are also generic beyond any
specific quality domain. The goals of the TOVE Ontologies
project of the Enterprise Integration Laboratory at the
University of Toronto are to:

1 In this paper, all references to VB denote Version Beta, e.g. TOVE
Traceability Ontology-VB.

AN ONTOLOGY FOR QUALITY MANAGEMENT

BT Technol J Vol 17 No 4 October 1999

132

• tracing back to processes where these problems often
originate,

• making recommendations to re-engineer those
processes.

The ISO 9000 Quality Advisor [5] is a software tool for
re-designing an enterprise to comply to ISO 9000. The tool
applies a set of axioms representing the ISO 9000
requirements to a populated enterprise model and
automatically evaluates whether the modelled enterprise
complies with the requirements. The axioms are constructed
using quality ontology representations.

The representations with which the TOVE Quality
Ontology-VB is constructed are from the TOVE Core
Ontologies — ontologies of activity, state, causality and
time [6], resource [7], and organisational structure [8].
Representations are added into the TOVE Quality
Ontology-VB only if they can be defined in terms of the
data model and axioms of the TOVE Core Ontologies. The
ontology results from decomposing the quality domain into
more specific domains, each of which is formalised as an
ontology of the TOVE Quality Ontology-VB. In section 3,
the TOVE Traceability Ontology-VB is presented. In
section 4, concluding remarks and further work that builds
upon the TOVE Quality Ontology-VB are stated.

2. Decomposing the task of engineering the TOVE
Quality Ontology-VB

2.1 What is Quality?

The official definition of quality recognised by
international standardisation bodies is from the ISO 9000:
‘Quality is the totality of features and characteristics of a
product or service that bear on its ability to satisfy stated or
implied needs’ [9]. This vague definition can be augmented
with a manufacturing-based definition [10], as stated by
Crosby [11]: ‘Quality means conformance to requirements.’
Combining ISO 9000 and Crosby’s definitions of quality,
the basic premise of the TOVE Quality Ontology-VB is the
following:

A need can be decomposed into a set of requirements
upon features and characteristics of a product or
service, and if all these requirements are conformed
to, then that need has been satisfied.

2.2 Decomposing a quality need

Figure 1 shows that as a quality need is decomposed
into business questions, there are concomitant competency
questions at each level of decomposition, which drive the
engineering of the TOVE Quality Ontology-VB. It is
possible to decompose a vague need such as the need for a
safe car into numerous concrete, measurable requirements
on features or characteristics such as the requirement on
stopping distance. Boehm [12] explains that requirements
are verified and validated:

• verification: ‘Are we building the product right?’

• validation: ‘Are we building the right product?’

A key assumption of the TOVE Quality Ontology-VB is
that it its representations can be used for verification, but
not validation — representations can be used to verify if a
requirement is conformed to, but not whether it is an
appropriate requirement. The ontology provides the terms,
relations, and attributes to represent the hierarchy of a
requirement’s sub-requirements, and measurable
requirements on a product’s features and characteristics. It
also provides the axioms to determine whether a given
measurable requirement is conformed to. A user represents
requirements, hierarchies, and requirement verification
rules (e.g. ‘For a given requirement to be verified, all sub-
requirements of that requirement must be verified’, or ‘For a
requirement to be verified, it is sufficient for 95% of all sub-
requirements on one feature or characteristic of a given
product to conform’) using ontology representations.

2.3 Quality domains represented in the TOVE Quality
Ontology-VB

Conformance of the example requirement on anti-lock
brakes cannot be determined unless the stopping distance is
measured. Di Franca [13] notes that: ‘Things are
investigated in physics insofar as it is possible to measure
them, and not with the impossible goal of discovering their
intimate essence.’ As in physics, measurement is the root of
quality management, as evidenced by Federal Express’
quality philosophy of ‘measure, measure, measure.’ So the
domain of measurement must be explored for the quality
ontology.

Before measurement, an entity must first be identified as
an entity to be measured. So, the domain of identification,
particularly unique identification, must be explored for the
quality ontology. Entities are identified and measured
because variability inherently exists. Through measurement,
variability that points to a quality problem is identified. The
most primitive analysis technique required to correct a
problem is traceability — the capability to trace, for

TOVE Ontologies are designed by specifying
competency questions which characterise tasks that an

ontology-based system must support. Once an ontology is
completed, it must be possible to pose competency
questions as queries using ontology terms, relations, and
attributes. Then competency questions can be answered —
i.e. answers to queries are deduced — using ontology
axioms. In engineering a generic quality ontology, an
overall system competency question can be: ‘What is the
quality of a given product, process, or system of the
enterprise?’ However, this question is too broad. Thus it is
decomposed into competency questions narrow enough in
scope to motivate development of ontology representations.
This decomposition also constitutes an abstract exploration
of the quality domain.

AN ONTOLOGY FOR QUALITY MANAGEMENT

BT Technol J Vol 17 No 4 October 1999

133

example, from a problematic assembly to its sub-assemblies
to diagnose the root of a problem. So the domain of
traceability is also explored.

The philosophy of minimal ontological commitment
[14] bounds the scope of the ontology. There are more
sophisticated quality analysis techniques than traceability,
such as SQC, QFD, quality costing, and ISO 9000, which
can be explored for the ontology. However, an ontological
bias is introduced by committing to represent one or more
of these analysis techniques to the TOVE Quality Ontology-
VB. Therefore, only the most general quality analysis
technique, traceability, is explored for the development of
the TOVE Quality Ontology-VB, along with the general

domains of measurement and identification. In particular,
this paper details one of the ontologies which comprise the
TOVE Quality Ontology-VB — the TOVE Traceability
Ontology-VB. Since it is not discussed in detail in this
paper, the reader is referred to the TOVE Measurement
Ontology [5] for formal representations with which quality
conformance can be evaluated. These representations
comprise the TOVE Measurement Ontology-VB.

2.4 Structure of competency questions

For each domain explored for the development of the
TOVE Quality Ontology-VB, the capability of the
information system implementation constructed using the

Fig 1 Engineering the TOVE Quality Ontology-VB — decomposing a need.

“I want a car to drive my family.
My need for safety must

be satisfied .”

“In this car, anti-lock brakes
may enhance safety.
This requirement for

anti-lock brakes must be
validated .”

“For an anti-lock braking
system, there must be a final

testing and inspection.
A requirement for this

activity must be verified .”

“For a standard driver driving
at 100 kph, the car with

anti-lock brakes must come
to a stop at 20 m.

This feature or characteristic of
the anti-lock brakes must
conform to requirements .”

what is the quality of a product,
process, or a system of an

enterprise?

is a certain need satisfied?

is a certain requirement validated?

is a certain requirement verified?

does a certain feature or
characteristic of a product
conform to requirements?

must represent quality of product,
process, system, as well as

enterprise

must represent need and
satisfaction, how a need is

satisfied

must represent requirement and
validation, and how a requirement

is validated

must represent verification, and
how a requirement is verified

must represent product, features
and characteristics and

conformance, and how a certain
feature or characteristic conforms

to requirements

these can be represented by
defining quality ontology terms

from core ontologies

competency
questions

answer this
business
question

ontology
representations are

used to answer
these

competency
questions

business questions TOVE ontology competency
questions

requirements for ontology
design

beyond TOVE quality ontology scope

within TOVE quality ontology scope

decomposes to more specific business questions

decomposes to more specific competency questions

decomposes to ontology design sub-requirements

motivates competency questions

motivates ontology design requirements

key

AN ONTOLOGY FOR QUALITY MANAGEMENT

BT Technol J Vol 17 No 4 October 1999

134

ontology of that domain to answer competency questions
validates the ontology. The competency of the ontology is
determined by performing the following steps.

• Statement of motivating scenario

This is a narrative about business issues and problems
that ultimately an ontology-based system will address.

• Statement of scope

Assumptions about the domain are made, and in so
doing the scope of the ontology becomes more
apparent. With these assumptions made, objects,
relations, and attributes that belong in the ontology are
vetted. Of the ontology evaluation criteria presented
by Fox et al [2], the scope dictates the extensibility,
granularity, and scalability of the ontology.

• Problem statement

This is the one general problem statement that justifies
the construction of the ontology. This is a question,
rising from the motivating scenario and within the
bounds of the scope of the ontology, posed generally to
serve as the template for all competency questions. The
problem statement affects the generality of the
ontology.

• Statement of user competency questions

Competency questions for the TOVE Quality
Ontology-VB must be motivated by questions related
to the motivating scenario. These questions are of the
form of the problem statement, but more specific.
These are called user competency questions, since
these are types of question likely to be asked by the
user of the ontology. These questions affect the
competency of the ontology.

• Statement of developer requirements

These questions characterise the design requirements
of the ontology. These questions dictate the
engineering of representations that are needed to
answer user competency questions, and are likely to be
asked by the developer of the ontology. These
questions affect the efficiency, perspicuity, and
transformability of the ontology.

3. TOVE Traceability Ontology-VB

• some representations required to represent the
traceability domain,

• example of an application of the ontological
engineering methodology,

• an example use of the ontology to solve a practical
problem

The steps in the engineering of the Traceability
Ontology-VB are included in the methodology shown in
Fig 2.

3.1 Competency questions

Motivating scenario

The following motivating scenario demonstrates the
importance of traceability for quality management.

• A quality problem with a batch of a final product is
found. It is known that an electric surge occurred
during a certain period of time, and that this may be the
cause of the quality problem. For diagnostics, records
of batches of different resources that were used or
consumed during this time to eventually produce the

Fig 2 Ontological engineering methodology.

pose competency questions
that determine the type of
tasks and problem-solving

an ontology supports

?

axioms that define and
constrain data model

data model of terms in domain

A1 A2 B1 B2

A B

X

A1∀ A2∀ Y∀ A1 A2∧ Y⊃{ }

B1∀ B2∀ B1 B2¬ ZZ∃⊃∨{ }

In this section, sample representations from the TOVE
Traceability Ontology-VB are presented to show the

following:

AN ONTOLOGY FOR QUALITY MANAGEMENT

BT Technol J Vol 17 No 4 October 1999

135

product must be examined. Also, records of batch
quantities used or consumed may help, as would
records of activities that used or consumed these
batches.

Scope

Grady [15] states that traceability is a clear knowledge
of ancestry, and so a discussion of traceability entails a
graphical notation of ancestry — the tree. As such the task
of traceability becomes one of recursively decomposing tree
nodes, until terminal nodes are encountered. In the TOVE
Core Ontologies, a non-terminal state is abstracted from a
conjunction and/or disjunction of terminal states [2].
Therefore bounding scope entails determining acceptable
traceability, given abstractions of conjunctive and
disjunctive states. It must also be determined which of the
TOVE entities are to be traceable.

TOVE Core Ontologies support abstraction of entities.
For example, activities are comprised of sub-activities, each
of which may have additional subactivities. It is possible to
represent and reason only about the abstracted activities, or
about all their hierarchy of sub-activities.

Given this, the following assumptions are stated to
enable traceability of abstracted entities.

• Assumption 1

It must be possible to trace from one entity to another,
where neither of the entities are abstracted entities.

• Assumption 2

If the previous assumption holds, it will be possible to
trace from one entity to another, regardless of their
levels of abstraction.

The following assumption determines which kinds of
entities are traceable.

• Assumption 3

Of the entities that the ISO 9000 recommends for
tracing, only ‘product’ and ‘activity’ are to be uniquely
identified and traced.

Combining these assumptions, what are appropriate
terms for ‘product’ and ‘activity’ that are non-abstracted
and traceable entities? ‘Traceable resource unit’ (tru) and
‘primitive activity’ are terms from the TOVE Identification
Ontology-VB which are non-abstracted representations of
‘product’ and ‘activity,’ respectively. A tru is a ‘batch’ of a
resource2, and is not an abstraction of other resource-like
entities; this term is more formally defined in the
traceability ontology. A primitive activity is an activity2

with no subactivities, and is also not an abstraction of other
activity-like entities.

 Problem statement

The problem statement is a general characterisation of
the problem from the motivating scenario.

• Q: Given an entity and a state of the enterprise, can all
entities and necessary attributes of these entities that
had a bearing on the quality of the given entity be
traced and identified?

The user competency question posed below is a form of
this general problem statement.

User competency question

The following user competency question is directly
motivated from the motivating scenario above.

• Q1: How much of a specific batch of a resource was
used by one or more activities over a given period of
time?

This question motivates the asking of more lower level
questions that a developer is likely to ask, about how to
model the traceability domain.

Developer requirements

In order to answer the user competency question, what
characterises a traceable resource unit (a batch) must first be
defined. For example, when can a traceable resource unit
not be traced? So the following is asked:

• Q2: Under what condition(s) is traceability of a tru not
possible?

What happens to the traceability of a tru if a portion of it
is used or consumed for one activity, while the remaining
portion is not? That is,

• Q3: What happens when a tru is split or disaggregated?

Conversely, what happens when two or more trus are
brought together? That is,

• Q4: What happens when trus are aggregated?

What about quantity changes over time?

• Q5: Quantities of a tru will vary over time. How will
this change be represented?

• Q6: Can the quantity of a tru be represented?

• Q7: Can the quantity of a tru at a certain point in time
be represented? 2 This term is from the TOVE Core ontologies.

AN ONTOLOGY FOR QUALITY MANAGEMENT

BT Technol J Vol 17 No 4 October 1999

136

3.2 Data model

Object-oriented model

The model (as depicted in Fig 3) represents the
following:

• a tru is recognised to exist,

• a tru has a resource point or a quantity,

• there may exist a primitive trace between a tru and a
primitive activity, a tru and another tru, or a primitive
activity and another primitive activity,

• the trace between one tru/primitive activity pair to
another tru/primitive activity pair is comprised of one
or more primitive traces.

Terminological model

The object-oriented model can be re-expressed as a set
of predicates with arguments.

• T1 — tru(Rt).

• T2 — primitive_activity(A).

• T3 — tru_known(Rt,Tp), where Tp is a time point at
which point Rt is known to exist.

• T4 — rp_tru(Rt,Tp,Q,U), where Q is the quantity of Rt
at Tp, measured in U units of measurement.

• T5 — primitive_trace(Rt1,Rt2,A,A,{L}); primitive_
trace(Rt,Rt,A1,A2,{L}), where L is the primitive trace
path between Rt1 and Rt2 via a common primitive
activity A, or between A1 and A2 via a common tru Rt.

• T6 — trace(Rt1,Rt2,A1,A2,{L}), where L is the trace path
between (Rt1,A1) to (Rt2,A2).

Next, axioms that formally define these predicates and
constrain their proper use are presented.

3.3 Axioms

These are some of the axioms of the TOVE Traceability
Ontology-VB, necessary to address developer requirements.
For brevity, only some of the First-order Logic
formalisations are shown.

• A1. tru(Rt): A tru is a homogeneous collection of one
resource, that is used/consumed/produced/released3 by
a primitive activity in a finite, non-zero quantity.

∀ Rt∃A∃S∃Rtru(Rt)≡has_tru(R,Rt)∧primitive_activity(A)∧

((use(S,A)∧uses(S,Rt))∨ (consume(S,A)∧consumes(S,Rt))∨

 (produce(S,A)∧produces(S,Rt))∨(release(S,A)∧
 releases(S,Rt)))∧

 ∀ Q(amount_committed(S,Rt,Q)⊃ Q>0).

where:

Rt is a traceable resource unit,

R is a resource, a collection of which comprises Rt,

S is state describing the use/consumption/production/
 release of Rt,

A: is the primitive activity which uses/consumes/
 produces/releases Rt,

and from TOVE Core Ontologies:

has_tru(R,Rt): resource R has a tru Rt,

use(S,A) ; uses(S,Rt): S is a state description for A’s
 usage, but not consumption of Rt,

consume(S,A) ; consumes(S,Rt): S is a state

 description for A’s consumption of Rt,

Fig 3 TOVE Traceability Ontology-VB data model.

tru_known

tru

rp_tru

trace

primitive
activity

primitive
trace

comprised of

trace totrace to

trace
from

trace
from

tru known
to exist

has resource
point

representations from
identification ontology

representations from
traceability ontology

key

3 These are terms from the TOVE core ontologies.

AN ONTOLOGY FOR QUALITY MANAGEMENT

BT Technol J Vol 17 No 4 October 1999

137

release(S,A) ; releases(S,Rt): S is a state description for
 A’s release of Rt,
produce(S,A) ; produces(S,Rt): S is a state description
 for A’s production of Rt
amount_committed(S,Rt,Q): S is a state description of
 the amount Q committed to the consumption/usage/
 /release/ production of Rt.

This axiom addresses all developer requirements.

• A2. tru_known(Rt,Tp): A tru is first ‘known to exist’
at the time that it is first used/consumed/produced/
released.

 ∀ Rt∃Tp tru_known(Rt,Tp)≡ tru(Rt)∧
∃S0∃T0∀ S∀ T[(uses(S,Rt)∨consumes(S,Rt)
 ∨produces(S,Rt)∨releases(S,Rt))∧
(uses(S0,Rt)∨consumes(S0,Rt)∨produces(S0,Rt)
 ∨releases(S0,Rt))∧
(state_duration(S,T)∧state_durations(S0,T0) ⊃T≥T0)∧
start_point(T0,Tp)].

where:

Rt is a traceable resource unit,
Tp is the time point at which the tru is recognised to

exist,
S is all states that use/consume/produce/release Rt,
S0 is the first state that uses/consumes/produces/

releases Rt,
T,T0 are time durations for states S, S0, respectively,

and from TOVE Core Ontologies:

state_duration(S,T): T is the time period covered by the
state description S,

start_point(T,Tp): Tp is the start time point for T.

This axiom addresses developer requirements Q5, Q6
and Q7.

• A3. rp_tru(Rt,Tp,Q,U): If a tru is produced by a
primitive activity, then the ‘resource point of the tru’ at
time Tp (the time at which the tru is completely
produced) is ‘quantity that was produced’,4 Q,
measured in U units.

∀ Rt∀ U∀ Q∀ Tp ∃A ∃S
primitive_activity(A)∧ produce(S,A)∧
produces(S,Rt)∧tru_known(Rt,Tp)∧
 amount_produced(Rt,Q)∧∃R

 unit_of_measurement(R,capacity,U,A) ⊃
 rp_tru(Rt,Q,Tp,U).

where:
Rt is a traceable resource unit,
Q is the quantity of Rt that was produced,
Tp is the time point at which Rt is produced,
U is the unit of measurement in capacity measurement

units, e.g. ‘obects’ and tons,

A is the primitive activity that produces Rt,

S is the state associated with the produced tru Rt,

R is the resource which comprises Rt,

and from TOVE Core Ontologies:

amount_produced(Rt,Q): Q is the amount of Rt that
was produced,

unit_of_measurement(R,capacity,U,A): Unit of
measurement of capacity of a resource R which is
used/consumed/ released/produced by A is U.

This axiom addresses developer requirements Q5, Q6
and Q7

• A4. rp_tru(Rt,Tp,Q,U): If a tru is released by a
primitive activity, then the ‘resource point of the tru’ at
time Tp (the time at which the tru is completely
released) is the ‘quantity committed to the activity’,5

plus the ‘quantity that was already available to other
activities’,6 measured in U units.

This axiom is used to address developer requirements
Q5, Q6 and Q7.

• A5. rp_tru(Rt,Tp,Q,U): If a tru is used or consumed by
a primitive activity, then the ‘resource point of the tru’
at time Tp (the time at which the usage or consumption
is completed) is the ‘quantity that was already available
to other activities’, Q, measured in U units.

This axiom addresses developer requirements Q5, Q6
and Q7.

• A6. rp_tru(Rt,Tp,Q,U): If there exists a ‘resource point
of a tru’ at time Tp1, and there exists a ‘resource point
for the same tru’ at time Tp2, and for any point Tp
where Tp∈ (Tp1,Tp2) there does not yet exist a
‘resource point for that tru,’ then the ‘resource point of
the tru’ for any point Tp is assigned to be the ‘resource
point of that tru’ at time Tp1, because the quantity of
the tru has not changed since Tp1.

This axiom addresses developer requirements Q5, Q6
and Q7.

• A7. Constraint on rp_tru: Before the time point, Tp, at
which the ‘tru is known to exist’, there is no ‘resource
point of the tru.’

This axiom addresses developer requirement Q2.

4 This phrase corresponds to the predicate amount_produced from the
TOVE core ontologies.

5 This phrase corresponds to the predicate amount_committed from the
TOVE core ontologies.
6 This phrase corresponds to the predicate amount_available from the
TOVE core ontologies.

AN ONTOLOGY FOR QUALITY MANAGEMENT

BT Technol J Vol 17 No 4 October 1999

138

• A8. Constraint on rp_tru: However after Tp, there is
always a ‘resource point for the tru’ (this value = 0, if
the tru has been completely consumed).

This axiom addresses developer requirement Q2.

• A9. Constraint on rp_tru: The ‘resource point for a tru’
is never incremented after it is recognised to exist.

∀ Rt∀ Tpz∀ Qz∀ U ∃ Tp[tru_known(Rt,Tp)∧(Tpz≥Tp

∧rp_tru(Rt,Qz,Tpz,U)∧ Qz ≥0].

where:

Rt is the ID of the tru,

Tp is the time point at which the tru is recognised to
exist,

Tpz is any time point equal to or after Tp,

U is the unit of measurement for Rt,

Qz is the the quantity of Rt at Tpz.

This axiom addresses all developer requirements.

• A10. Constraint on rp_tru: Individual units of a tru are
indistinguishable from each other, and hence
traceability within a tru is not possible.

This axiom addresses developer requirement Q3.

• A11. Constraint on rp_tru: Once ‘trus are known to
exist’, aggregating the contents of two or more trus
does not result in the aggregate quantity maintaining
the ID of any of the trus that are aggregated.

This axiom addresses developer requirement Q4.

3.4 Answering competency questions

The user competency question was this:

Q1: How much of a specific batch of resources was
used by one or more activities over a given period of time?

The question can be posed in English using the terms
from the ontology data model as:

Q1: What were the resource points of a given tru κ over
a period of time, [τ1,τ2], where the resource points are
measured in υ units of measurement?

The question can be formally stated in First-order Logic
using terms from the ontology as:

Q1: ∀ Tp∀ Qu(rp_tru(κ, Qu, Tp, υ) ∧ τi ≤ Tp ≤ τ2)

Ontology axioms are then applied to the populated
enterprise model to prove this First-Order Logic theorem

for the constants, κ, τ1, τ2, and υ. The implementation
example shows the graph of resource point over time for a
lamp manufacturer for which a populated enterprise model
exists, for a κ = tru_bolt1_001, for τ1 = 0 and τ2 = 26,
measured in υ = ‘object’ unit of measurement.

The data model of the TOVE Quality Ontology-VB is
implemented in C++ using the ROCKTM knowledge
representation tool from Carnegie Group. The axioms are
implemented in Prolog. Competency questions are
implemented as Prolog queries, which are answered by
applying the axioms to an instantiated data model. Queries
about the enterprise model are made in Prolog. The query
answers are visualised using a graphical user interface
called OakTM, developed at the Enterprise Integration
Laboratory.

The Prolog implementation of the competency question
is shown below, along with the graphical representation of
the answer7.

Implementation:

 show_tru_history(R,[Te,Te]):-
 rp_tru(R,Q,Te,U).

 show_tru_history(R,[Ts,Te]):-
 rp_tru(R,Q,Ts,U),
 TNew is Ts+1,
 show_tru_history
 (R,[TNew,Tel]).

Figure 4 shows that the traceable resource unit named
tru_bolt1_001 was produced by the primitive activity
named purchase_bolt1_001 at time 4 min, where the
quantity of the tru was 100. Figure 4 also shows that all
quantity of tru_bolt_001 was consumed for the primitive
activity named assemble_nut_bolt1_001 at time 11
min.

Fig 4 Graphical answer to traceability user competency question.

7 Some of the granularity assumptions in the TOVE traceability ontology-
VB are that there are integral units of time, and quantity changes occur dis-
cretely, not continuously.

2

Apply Cancel NetaOK

6 10 14 18 22 26

100

50

0

time, min

qu
an

tit
y

resource points of TRU’s over time

list text form graphics editable

tru_bolt1_001
assemble_nut_bolt1_001
purchase_bolt1_001

AN ONTOLOGY FOR QUALITY MANAGEMENT

BT Technol J Vol 17 No 4 October 1999

139

4. Conclusions

Kim [5] details ontology representations that extend the
expressiveness of the TOVE Traceability Ontology to
characterise more finely conditions for ensuring
traceability; more detailed constraints on aggregating and
splitting trus are provided. There are two key additional
ontology extension opportunities. One is to develop
representations to ensure and enable traceability for
requirements; this would be crucial for a quality control
application for the software development process. The other
is to extend the ontology for continuous processing, say for
ensuring and enabling traceability for an oil refinery.

The main evaluation criterion for the development of
the TOVE Traceability Ontology-VB is competency, the
capability of representations to support tasks for which it is
designed. Other than discerning that axioms are consistent,
detailed evaluations versus knowledge representation
evaluation criteria such as completeness and closure, as well
as systems performance criteria like efficiency and
scalability are beyond the scope of this research endeavour.
Completeness evaluations are applied for some of the other
TOVE ontologies [6].

There are many augmentations to the Beta Version of
the TOVE Quality Ontology. Kim [5] details a more
expressive and competent set of models called the TOVE
Ontologies for Quality Modelling.

To summarise, a logical formalisation of quality
knowledge is presented in this paper. By formalising this
body of knowledge, the following benefits have accrued:

• elucidation of the concept of quality by classification
of identification, traceability, and measurement as
domains explored for the development of the TOVE
Quality Ontology-VB,

• clearly identified terminology and axioms for
traceability — the TOVE Traceability Ontology-VB,

• presentation of a rigorous methodology for ontological
engineering,

• graphical presentation of the capability to use this
formalisation to make deductions and decisions about
quality.

The TOVE Quality Ontology-VB is the representational
basis upon which formalised quality knowledge can be used
to integrate quality-related decision making throughout an
enterprise.

Acknowledgments

References

1 Hauser J R and Clausing D: ‘The House of Quality’, Harvard Business
Review, pp 63—73 (May-June 1988).

2 Fox M S, Chionglo J C and Fadel F G: ‘A common-sense model of the
enterprise’, in 2nd Industrial Engineering Research Conference
Proceedings, Los Angeles, CA (May 1993).

3 Godfrey A B: ‘Ten clear trends for the next ten years’, in Quality
Quotes, 19, No 2 (Spring 1993).

4 Brachman R J: ‘On the epistemological status of semantic networks’, in
Findler N V (Ed): ‘Associative Networks: Representations and Use of
Knowledge by Computers’, Academic Press, pp 3—50 (1979).

5 Kim H M: ‘Representing and reasoning about quality using enterprise
models’, PhD Thesis, Department of Mechanical and Industrial
Engineering, University of Toronto, Toronto, Ontario, Canada (1999).

6 Grüninger M and Fox M S: ‘Methodology for the design and
evaluation of ontologies’, Workshop on Basic Ontological Issues in
Knowledge Sharing, IJCAI-95, Montreal (1995).

7 Fadel F G, Fox M S and Grüninger M: ‘A generic enterprise resource
ontology’, in Proceedings of Third Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises,
Morgantown, WV, pp 117—128 (April 1994).

8 Fox M S, Barbuceanu M, and Grüninger M: ‘An organisation ontology
for enterprise modelling: preliminary concepts for linking structure and
behaviour’, in Fourth Workshop on Enabling Technologies —
Infrastructures for Collaborative Enterprises (WET-ICE 95), West
Virginia University, pp 71—81 (April 1995).

The TOVE Traceabili ty Ontology provides represent-
ations with which a quality problem identification and

tracing software application can be built. Though there are
many similar applications which support traceability — e.g.
enterprise resource planning software like SAP [16] — most
do not represent and enforce the properties of an entity which
make it traceable. Traceability ontology axioms specify con-
straints to ensure traceability under conditions when trace-
ability is likely to be jeopardised — when two or more similar
entities are aggregated, and when one entity is split into two
or more similar entities. So, not only are data models and
axioms provided in the ontology to perform a trace on prod-
ucts (trus) and activities (primitive activities), additional axi-
oms ensure that traceability is possible.

This research is supported, in part, by the Natural
Science and Engineering Research Council, Digital

Equipment Corp, Micro Electronics and Computer
Research Corp, and Spar Aerospace.

AN ONTOLOGY FOR QUALITY MANAGEMENT

BT Technol J Vol 17 No 4 October 1999

140

9 ISO General Secretariat: ‘ISO 9000 International Standards for Quality
Management’, Geneva, Switzerland (1991).

10 Garvin D A: ‘What does ‘Product Quality’ really mean?’, Sloan
Management Review (Autumn 1984).

11 Crosby P B: ‘Quality is Free: The Art of Making Quality Certain’,
McGraw-Hill, New York (1988).

12 Boehm B: ‘Software engineering economics’, Prentice Hall (1981).

13 Di Franca G T: ‘The investigation of the physical world’, Cambridge,
Cambridge University Press, England (1981).

14 Gruber T R: ‘Towards principles for the design of ontologies used for
knowledge sharing’, Technical Report KSL 93-4, Knowledge Systems
Laboratory, Computer Science Department, Stanford University,
Stanford, CA (1993).

15 Grady J O: ‘System requirements analysis’, McGraw-Hill Inc (1993).

16 SAP AG: ‘SAP Solutions’, — http://www.sap.com: (August 1999).

Henry Kim is an Assistant Professor of
Information Systems at the Schulich School
of Business, York University in Toronto,
Canada. He received his PhD in Industrial
Engineering from the University of Toronto
with a thesis titled, “Representing and
Reasoning about Qaulity using Enterprise
Models’.

He is interested in ontology-based
information systems that facilitate knowledge
sharing by using shared vocabulary and
business rules. He is also interested in
applying these systems for enterprise

modelling, knowledge management, systems integration, and eCommerce.

He was a Short-Term Fellow at BT Laboratories in the Intelligent Business
Systems Research Group, conducting research into using ontologies to
integrate data from heterogenous BT systems. He has also worked in
industry as a management consultant, technical consultant, software
engineer, and industrial engineer.

Mark Fox received his BSc in Computer
Science from the University of Toronto in
1975 and his PhD in Computer Science from
Carnegie Mellon University in 1983. In 1979
he joined the Robotics Institute of Carnegie
Mellon University as a Research Scientist. In
1980 he was appointed Director of the
Intelligent Systems Laboratory. He co-
founded Carnegie Group Inc in 1984, a
software company which specialises in
knowledge-based systems for solving
engineering, manufacturing, and
telecommunications problems. Carnegie
Mellon University appointed him Associate

Professor of Computer Science and Robotics in 1987 (with tenure in 1991).
In 1998 he was appointed Director of the CMU Center for Integrated
Manufacturing Decision Systems. In 1991, he returned to the University of
Toronto where he was appointed the NSERC Research Chairholder in
Enterprise Integration and was appointed Professor of Industrial
Engineering, Computer Science and Management Science. In 1992, he was
appointed Director of the Collaborative Program in Integrated
Manufacturing. In 1993, he co-founded Novator Systems Ltd, a company
that provides E-Retail services over the Internet.

Michael Grüninger has been a Research
Scientist in the Enterprise Integration
Laboratory at the University of Toronto since
1993 and is Project Manager of the Enterprise
Engineering Project.

He received a BSc in Computer Science from
the University of Alberta in 1987 and his MSc
in Computer Science from the University of
Toronto in 1989. His doctoral work at the
University of Toronto has been in the area of
logic and object recognition in computer
vision, constructing ontologies to support 2-D
object recognition in scenes with occlusion.

He currently supervises the development of TOVE (Toronto Virtual
Enterprise) within the Enterprise Integration Laboratory.

