
Formal models of business process reengineering
for design and design validation

Enterprise Integration Laboratory
Department of Mechanical & Industrial Engineering

University of Toronto
4 Taddle Creek Road

Toronto, ON M5S 3G9

Copyright by Katayoun Atefi (1997) c

Katayoun Atefi

by

TR-EIL-97-1

Tel: +1(416) 978-6823
Fax: +1(416) 971-2479

Internet: eil@ie.utoronto.ca

iii

Acknowledgments
I would like to express my sincere gratitude and appreciation to my supervisor Professor Mark S.

Fox for his encouragement, support, advice and for all I have learned from him, during my

M.A.Sc. study at University of Toronto.

My special thanks to Michael Gruninger for his valuable time, great conversations on heuristics

and ontologies and his valuable comments that have greatly improved this thesis.

I would like to thank Professor Michael Carter for his help. I thank Professor Beno Benhabib for

his support. In addition, I thank the following staff members for all of their assistance: Norma

Dotto, Alison Donald, Brenda Fung, and Louisa Kung. I wish to thank our system administrators

Oscar del Rio and Evan Sidoriak for the help they have given me.

This research was supported, in part, by the Department of Mechanical and Industrial Engineer-

ing, University of Toronto, the Manufacturing Research Corporation of Ontario, and Natural Sci-

ence and Engineering Research Council.

I would like to thank my husband, Jeff Sansome, for all of his encouragement and understanding.

Finally, I wish to thank my father, mother, sisters and brothers in law for all of their support.

ii

Abstract
Process design is an essential step in business process reengineering. Improving process design

and searching for new process solutions are mostly based on success stories and heuristics. Since

the underlying reasons of heuristics are often ambiguous, the results of their application are

unpredictable. Formal models need to be developed to identify the foundation of the expertise.

Towards this end, the thesis develops three formal models.

• The analytical model of agent setup time is used to demonstrate the effect of some process and

agent assignment strategies on the agent setup time. The model allows us to describe the ratio-

nale of many heuristics which recommend assigning a process or some of its tasks to an agent

or to a team to increase the process efficiency.

• The first order logic (FOL) model of agent/activity design strategies; i.e. a group of agent

assignment strategies that can improve agent setup time. Given a process, a reasoning system

can explore a variety of agent assignment designs and use this logical model to find the ones

which lead to minimal agent setup time.

• The FOL model of design validation expertise defines a total of five principles with respect to

information flow, case management and agent constraints. Given a process, the model can be

employed to find the situations where these principles are violated.

The logical models make use of generic representation of activity, agent, information as well as

the generic representation of what is the truth value of a property at different time points and how

this value changes. Defining the meaning of each employed term, the logical models address the

problem of ambiguity in BPR. They are also operational. We integrated them into a software tool;

i.e. Process Integration advisor. By automatically generating alternative agent assignments that

achieve minimal agent setup time and by informing the process designer of some problems in the

process structure, the advisor supports analyzing a given process.

Chapter 1 Introduction 1

Chapter 2 - Part 1 Review of process design heuristics 6

2.1 Introduction 6

2.2 Reengineering the Corporation 11

2.2.1 Several jobs are combined into one 11

2.2.2 Hybrid centralized/decentralized operations are prevalent 11

2.2.3 Work is performed where it makes the most sense 12

2.2.4 The steps in the process are performed in a natural order 12

2.2.5 Reconciliation is minimized 12

2.2.6 Processes have multiple versions 13

2.2.7 A Case Manager provides a single point of contact 14

2.2.8 Workers make decisions 14

2.2.9 Checks and controls are reduced 14

2.3 Process Innovation 15

2.3.1 Order management processes 15

2.3.1.1 Case manager 15
2.3.1.2 Order segmentation 16
2.3.1.3 Customer participation 16
2.3.1.4 Real-time process execution 16
2.3.1.5 Parallel processes 16
2.3.1.6 Process partnerships 17

2.3.2 Other process types 17

2.3.2.1 Marketing processes 17
2.3.2.2 Service processes 17
2.3.2.3 Research processes 18
2.3.2.4 Engineering and design processes 19
2.3.2.5 Manufacturing processes 19
2.3.2.6 Logistical processes 20

2.4 Don’t Automate, Obliterate 21

2.5 Business Process Improvement 22
iv

2.6 Other authors 25

2.6.1 Methods to Help Reengineer Your Company for Improved Agility [Ligus 93] 25

2.6.2 Business Re-engineering; a Strategy-driven Approach [Talwar 93] 26

2.6.3 Simple as ABC, What on Earth is Business Process Reengineering? [Booth 94]

[Booth 95] 27

2.6.4 Useful hints [Miller 95] 28

2.6.5 Principles of Reengineering [Klein 95] 29

2.6.6 How to Make Reengineering Truly Effective? [Gilmore 95] 30

2.7 Conclusion 30

2.7.1 Heuristics; their positive aspects and limitations 30

2.7.2 Emerging themes from the reviewed heuristics 32

2.7.2.1 Agent assignments; the focus of chapters 3 and 4 of this thesis 32
2.7.2.2 Case manager, the focus of section 5.2 33
2.7.2.3 Concurrency in information intensive processes 34

Chapter 2- Part 2 Tools 36

2.8 Classification 36

2.9 Discontinuous Transformations (DT) 40

2.9.1 Review 41

2.10 Conclusion 42

Chapter 3 Analytical model of agent setup time 45

3.1 Agent setup time model 46

3.2 Manufacturing process strategies 48

3.2.1 Batch like orders 50

3.2.2 Transfer line 50

3.2.3 Common components 50
v

3.2.4 Standard interfaces 51

3.2.5 Computer controlled equipment 51

3.3 Agent/activity design strategies 52

3.3.1 Assign one agent to perform activities Aci and Acj 53

3.3.2 Assign an agent with the help of a computer program to perform activities Aci and

Acj 54

3.3.3 Assign a team to perform activities Aci and Acj 55

3.3.3.1 Assign one agent to perform activities Acj-1 and Acj-2 57
3.3.3.2 Agent/activity design strategies and the issue of assigned agent 58

3.4 Conclusion and summary 60

Chapter 4 Formal model of agent/activity design strategies 63

4.1 Formalization methodology 64

4.2 TOVE project 67

4.3 Constructing the logical model of agent/activity design strategies 67

4.3.1 Motivating scenario 67

4.3.2 Informal competency question 69

4.3.2.1 Expressing the question, using FOL 70
4.3.2.2 Tailoring the question, with respect to TOVE’s definition of activity

 71
4.3.2.3 Consistent definitions at various levels of detail 72

4.3.3 Terminology 74

4.3.4 Axioms 76

4.3.5 Formal competency question 81

4.4 Extending the model 82

4.5 Generalization of the competency question 84

4.6 Summary 85
vi

Chapter 5 Design validation model 87

5.1 Dangling information 88

5.1.1 Motivating scenario and informal competency question 88

5.1.2 Terminology and axioms 89

5.1.3 Formal competency question 90

5.2 Case management 90

5.2.1 Motivating scenario 90

5.2.2 Informal competency questions 92

5.2.2.1 Temporal projection 92
5.2.2.2 Agent constraints 93
5.2.2.3 Last version of informal competency questions 95

5.2.3 Terminology 96

5.2.4 Axioms 98

5.2.5 Formal competency questions 99

5.3 Changeable agent assignments 100

5.3.1 Motivating scenario, informal and formal competency question 100

5.4 Summary 101

Chapter 6 Incorporating FOL models into a software tool 103

6.1 Implementation of agent/activity design strategies 104

6.1.1 Implementation technique 104

6.1.2 Algorithm 107

6.1.3 Prolog program 108

6.2 Pre-order Management Process (PMP) 111

6.2.1 An overview of PMP 111

6.2.2 PMP subactivities 113

6.2.2.1 Identify potential order 113
vii

6.2.2.2 Collect and evaluate customer data 113
6.2.2.3 Select and assign “transaction manager” 114
6.2.2.4 Evaluate, drop or select the pre-order 116

6.3 The Process Integration advisor 116

6.4 Analysis of PMP 117

6.4.1 Summary of results 118

6.4.2 Results 120

6.4.2.1 Dangling information 121
6.4.2.2 Case management 122
6.4.2.3 Changeable agent assignments 124
6.4.2.4 Agent/activity design strategies 125

6.5 Summary 127

Chapter 7 Summary and future work 129

7.1 Summary of the thesis 129

7.1.1 Demonstrate the heuristic nature of process design 130

7.1.2 Identify the dominant emerging theme from the heuristics 130

7.1.3 Create an analytical model of agent setup time 131

7.1.3.1 An overview of the analytical model of agent setup time 131
7.1.3.2 The application of our analytical model of agent setup time 132
7.1.3.3 The positive aspects of our agent setup time model 133
7.1.3.4 The limitation of our agent setup time model 133

7.1.4 Develop the logical model of agent/activity design strategies 135

7.1.4.1 The benefits of the logical model of agent/activity design strategies
 135

7.1.5 Develop the design validation model 136

7.1.5.1 The benefits of our design validation model 136
7.1.6 Integrate the FOL models into the Process Integration advisor 138

7.1.6.1 The benefits of the Process Integration advisor 138
7.1.7 Demonstrate the application of our work 138

7.2 Future work 139

7.2.1 Analytical model of agent setup time 139
viii

7.2.2 Ontologies 139

7.2.3 Implementation 139

7.2.4 Developing other formal models of BPR 140

References 141

Appendix A 151

A.1 Translating constraints from FOL into the PROLOG axioms 151

Appendix B 153

B.1 About Prolog 153

B.2 Files 153

B.2.1 Expertise 154

B.2.2 Temporal Projection 154

B.2.3 Pre-order Management Process (PMP) 154

B.2.4 Possible values for assigned agents 155

B.2.5 Demo 155

B.2.6 Other files 155

B.3 Files 157

B.3.1 all_thesis.log 157

B.3.2 thesis_ld_demo.pl 162

B.3.3 dng.pl 163

B.3.4 trc.pl 164

B.3.5 chg.pl 167

B.3.6 stp.pl 169
ix

B.3.7 model.pl 175

B.3.8 main_def.pl 179

B.3.9 scenario.pl 185

B.3.10 driver1.pl 186

B.3.11 subactivity_def.pl 188

B.3.12 pmp_agents 189

B.3.13 thesis_Queries.txt 190
x

xi

List of Tables
TABLE 1. Strategies and their effects on agent setup time 62

TABLE 2. Terminology for agent/activity design strategies 74

TABLE 3. Terminology for the “dangling information” 90

TABLE 4. Terminology for the “case management” 96

TABLE 5. Summary of the design validation model 102

TABLE 6. The possible outcomes and the activity enabled by each outcome 114

TABLE 7. Applying the Process Integration advisor to PMP; Summary of results 119

TABLE 8. The effects of process and agent assignment strategies on agent setup time 134

TABLE 9. Summary of the design validation model 137

List of Figures
FIGURE 1. The Components of BPR 10

FIGURE 2. Agi and Agj are the same. 68

FIGURE 3. Agi and Agj are a team. 69

FIGURE 4. Another subactivity such as Ack uses this information and Agk who performs Ack is

the same as Agj. 69

FIGURE 5. An overview of PMP subactivities 112
xii

xiii

xiv

Glossary

if and only if ≡

and ∧

entails

not not

for all ∀

implies⊃

or∨

there exists ∃

Chapter 1

Introduction
The goal of this thesis is to develop formal models of business process reengineering (BPR)

expertise; the ones that can demonstrate its underlying principles, extend the expertise to a larger

group of users, and enable the consistent application of the practice across many enterprises.

Towards this goal,

1. We develop an analytical model that highlights the various components of agent setup time.

The model is used to describe the effects of different agent assignments and manufacturing

process strategies on agent setup time.

2. We create a logical model that defines various “agent assignment” design strategies that

improve agent setup time. A reasoning system can use the model to actually draw design alter-

natives that lead to minimal agent setup time.

3. We develop a logical model that can be employed to find the problems of an existing process

design with respect to information flow, case management and agent constraints.

4. We incorporate the logical models into a software tool and use the tool to analyze a hypotheti-

cal process. The tool assists the designer in evaluating the process design.
1

Chapter 1 : Introduction
Following, we describe the motivation and key aspects of the thesis.

The knowledge of business process reengineering (BPR) is informal and descriptive. BPR experts

such as [Hammer et al. 93] and [Davenport 93] present a set of heuristics to help designers in the

early stages of process design.

Reengineers like other human experts “are notoriously unreliable in explaining exactly what goes

on in solving a problem” [Luger & Stubblefield 93]. Parts of their reasoning and analysis method-

ology might have become obvious or even automatic to them after awhile working in their field.

For this reason, they often forget to mention the problem that their heuristic tries to solve, the

technique that the heuristic uses to attack that problem, the conditions under which the employ-

ment of the technique would actually solve or improve the problem, and/or the meaning of the

terminology used in describing the heuristic, (see the conclusion of chapter 2- part 1).

Heuristics with such characteristics are insufficient to make the BPR expertise available to a

wider range of people. A software tool which is built based on these heuristics, would provide

inconsistent solutions and thus would be incapable of supporting and expediting the process of

enterprise design, (see the conclusion of chapter 2- part 2). Consequently the design of enterprises

is still primarily dependent on the intuitive activity of consultants.

Our effort was motivated by these shortcomings in the expertise. Our goal is to transform process

design knowledge into an engineering discipline where its principles can be applied in a consis-

tent manner. Towards this goal:

1. We create an analytical model that highlights the components of agent setup time.

The model allows us to explore the effect of some manufacturing process strategies and agent

assignment strategies on the agent setup time, (see chapter 3). It reveals the underlying princi-

ples of a large group of heuristics. These heuristics recommend assigning the entire process or

some of its activities to an agent or a team to improve the process efficiency through decreas-

ing hand-offs, rework and error, (see the conclusion of chapter 2- part 1).
2

Chapter 1 : Introduction
Agent setup exists if an agent requires some amount of preparation; e.g. understanding the

information contained in the received transaction before performing the activity.

Manufacturing process strategies such as “Adam Smith’s division of labor principle”, “batch

like orders”, and “producing different products that use the common components” structure

the work so that an agent receives the transactions which are either identical or within a pre-

defined range. In these situations the amount of context specific information (contained in the

received transaction) is small and thus the agent setup time is trivial.

However, it might be the case that one agent receives different transactions. In this case, the

agent needs to obtain a certain amount of context specific information, prior to performing the

activity. For instance a designer needs to understand the product requirement before perform-

ing the design. In these situations, a group of agent assignment strategies can reduce the agent

setup time. We refer to this group as “agent/activity design strategies”.

One of the agent/activity design strategies is “assigning one agent to the activity (Aci) which

produces the information and the activity (Acj) which uses that information”. This strategy

will decrease the agent setup time for the following reason. Performing Aci, the agent already

assimilated the context specific information. S/he can perform Acj, without having to under-

stand the information once again1.

2. We develop a First Order Logic model of the “agent/activity design strategies”, (see chapter

4).

The logical model has two roles. First, it is a means of expressing the strategies- i.e. through a

set of logical axioms, the model defines the agent assignment strategies that can improve

agent setup time. The second role comes from viewing the definition of strategies as a set of

constraints. With respect to this view, the model actually defines a method of determining

whether an arbitrary design satisfies these constraints. This means, a reasoning system can

1. Here, we assume that the agent does not forget what s/he has already obtained.
3

Chapter 1 : Introduction
explore various design alternatives and use this logical model to find the answer(s) to the fol-

lowing question:

• Given a process, what is the redesigned process which satisfies the “agent/activity design

strategies”, leading to minimal agent setup time?

The model is clear; i.e. the meaning of the each term, employed by the model, is formally

defined. It is built upon the generic representation of activity, agent and information.

3. We develop a First Order Logic model that allows us to validate a process design with respect

to information flow, case management and changing agents constraints, (see chapter 5).

Expressing a total of five principles, the model enables a reasoning system to find the areas of

design where these principles are violated. In specific, the model is capable of answering the

following questions:

• Given a set of activities, is there a piece of information which is produced by an activity

and not used by any other activity?

• Given a process, is there a time when no “case manager” exists for this process?

• Given a process, is there a time when a “case manager” exists but s/he is unknown by the

customer?

• Given a process, is there a time when an agent should perform an activity in the process

and the case manager of the process does not know about it?

• Given a process, is there any activity which can change the assignment of an agent to a

role or to an activity?

The model is based on the generic representation of what is the truth value of a property at dif-

ferent time points and how this value changes, as well as the generic representation of agents,

activities, roles, agent assignments and information.

4. We integrate all the logical models into a software tool, which is called Process Integration

advisor (see chapter 6). The tool illustrates the practical use of our work in enterprise design.
4

Chapter 1 : Introduction
Embedding the logical model of agent/activity design strategies, the advisor automatically

generates alternative agent assignments that satisfy the “agent/activity design strategies”.

Thus it can be employed to design or redesign processes, providing that the design perspective

is improving the agent setup time.

Incorporating the design validation model, the advisor can be used to improve new designs

and refine the design of existing processes.

Our effort in this line is one step towards automation of process design. We demonstrate this

by applying the advisor to a hypothetical process. The Process Integration advisor which is an

encapsulation of our logical models of expertise, enables us to identify the problems and

strengths of this process and to provide a set of recommendations to improve its design.

In summary, we formalize some portions of BPR expertise. By formalization, we mean identifica-

tion, formal representation and computer implementation of intuitions implicit in practice [FOX

94]. This promotes the growth and preservation of enterprise design expertise, provides an infra-

structure for rapid and clear communication, facilitates the sharing and consistent use of the

knowledge for various applications and users.
5

Chapter 2 - Part 1

Review of process design heuristics
In this part, we review the process design heuristics. We begin with an introduction to business

process reengineering (BPR). Then we summarize the process design heuristics, presented by

various authors. At last, we identify the common characteristics that prohibit these heuristics from

serving as a foundation for a formal model of BPR.

2.1 Introduction

“Like a lot of fads, there’s a good idea at the heart of it, but it’s not capable of living up to all of

the expectations created for it”[Davenport 96].

According to [Hammer et al. 93], two of the pioneers of the reengineering, the definition of busi-

ness process reengineering is “the fundamental rethinking and radical redesign of business pro-

cess to achieve dramatic improvements in critical contemporary measures of performance, such

as cost, quality, service, and speed.”

The concepts behind reengineering, are rooted in the other business improvement methods, such

as sociotechnical approach, quality oriented methods, industrial engineering and competitive IT
6

Chapter 2 - Part 1 : Review of process design heuristics
[Davenport 93], [Earl 94], [Strassman 93]. Among these approaches, one of the most popular in

the last decades was Quality movement. Like reengineering, it is a process centered approach1

which recognizes the value of customer needs, employee empowerment and cultural change.

Unlike reengineering, the focus of Quality efforts has always been on continuous and gradual

enhancment of the existing processes. Only a few of Quality experts, e.g. Juran and Deming,

encouraged “Radical process improvement” and in reality it was never practiced. Only recently,

Quality experts, e.g. Harrington, spoke of the role of IT in process improvement [Davenport 93].

By the middle to late 1980s, some American companies recognized that under the intensified

pressures of business environment, the gradual pace of improvement was insufficient. They

understood the need for dramatic change in their business performance. These companies did not

enhance their existing processes or automize them. They used IT to restructure some of their key

processes. The improvement in those processes cost or execution time was dramatic. In the begin-

ning of 1990s, the consultants who studied and worked with these companies, started to develop a

new approach for business improvement. The approach has emerged under various names such as

business process innovation [Davenport 93] and business process reengineering [Hammer et al.

93]. Because of the widespread acceptance of the word reengineering, it is used here.

There has been a proliferation of BPR literature in recent management and information technol-

ogy literature. Various BPR methodologies are proposed, e.g. [Fitzgerald et al. 96], [Booth 94],

[Ghani 96], [Klein 95], [Khoong 96]. These BPR methodologies vary in their components, the

importance attached to the components, e.g. IT [Venkatraman 94], the relation and order among

the components [Khoong 96], the type [Drew 94] and size [Guha 93], [Hale 96] of the industry,

comprehensiveness and depth, etc. However there are some commonalities among them. Figure 1

on page 10 illustrates the common components of a BPR methodology and their relationship

through an abstract influence diagram2. The diagram also shows the relationship among BPR

1. It looks at a set of activities that are designed to produce a specified output which is valuable for a customer.
7

Chapter 2 - Part 1 : Review of process design heuristics
heuristics1 (indicated as highlighted ovals) with the other BPR components. These heuristics are

rules of thumb that are based on the experiences of consultants and practitioners of BPR projects.

These heuristics provide guidelines for designing and implementing enterprises. Some authors

arrange them in groups [Davenport 93] [Hammer et al. 93]. The following groups can be identi-

fied:

1. IT enabling roles heuristics. These heuristics describe various ways in which information

technology can enable or constrain new process designs. Understanding the various deploy-

ments of IT to improve processes, designers can come out with better designs. For instance,

[Davenport 93] recognizes a number of key applications of IT for each type of process. He

introduces automated design, simulation systems, tracking systems, decision analysis systems

and interorganizational communication systems as the key applications of IT for product

development processes.

2. Process and scope selection heuristics. The heuristics of this group describe various criteria

to choose a process and its scope for reengineering. Some of these criteria are strategic rele-

vancy, process health and manageability [Davenport 93].

3. Organizational structure, systems and behavior heuristics. These heuristics describe the

employees educational strategies, management responsibilities and behavior, performance

measures and compensation, organizational structure and culture that enable new process

designs. For instance, it is recommended that compensation systems must be based on results,

managers should have a coach like behavior, organizational structure should be flat, organiza-

2. An influence Diagram consists of three node types:
Decision nodes. These nodes represent the decisions under the control of the decision maker; i.e. the one(s) who decide about
how new processes and enterprise should be. Arrows entering such decision nodes show the information that is available at the
time of the decision.
Chance nodes. The quantities in these nodes are considered uncertain. Arrows entering chance nodes means the node is proba-
blistically dependent on whatever is at the other end of arrow.
Value node. This node represents the variable whose value must be determined or the question that must be answered.

1. A heuristic is “a rule of thumb, strategy, or trick used to improve the efficiency of a system which tries to discover the solutions
of complex problems” [Slagle 71].
8

Chapter 2 - Part 1 : Review of process design heuristics
tions should be structured around the process teams, and workers should be multi dimensional

and empowered [Hammer et al. 93].

4. Implementation heuristics. The intent of these heuristics is to prevent implementation pit-

falls and to manage the required changes from as-is to the future situation. The examples of

pitfalls are assigning someone who does not understand reengineering to lead the effort,

applying bottom-up approach to reengineering, neglecting people’s values and beliefs,

emphasizing only process design and ignoring the changes that are triggered by the new pro-

cess design [Hammer et al. 93].

5. Process design heuristics. There is no “one best way” [Mintzeburg 79] to design a process.

Various factors such as business strategies, objectives(s), technology and the degree of its

deployment, customers demands, the intensity of competition, policies and available

resources affect the design. BPR experts more or less recognize the importance of these fac-

tors in designing new processes. For instance all of them agree that process design should be

conducted in light of business strategies [Drew 94]. However in order to assist designers in

developing process design ideas, they package the characteristics of typical reengineered pro-

cesses. These packages are presented under different names, e.g. reengineering principles

[Hammer et al. 93], innovation strategies for typical process types [Davenport 93]. We refer to

them as “process design heuristics”. In the next sections, we organize these heuristics based

on various authors and summarize them. In conclusion, we describe why these heuristics can

not provide a foundation for a reliable and consistent model of business process reengineer-

ing.
9

Chapter 2 - Part 1 : Review of process design heuristics
FIGURE 1. The Components of BPR

Successful BPR

Migration plan

Implementation

Existing organizational
structure, systems &

Initial design of new
processes

Design of new processes,
organizational structure,
systems & behavior

IT
Existing

Selection of processes & their
scope

Business strategy & core

Understanding &

current processes

Available resources

Process &

Existing managerial
commitment &

support

scope selection

Participants in BPR &
their commitment

Communication

BPR
methodology

Process impact on
customers

Understanding
customer’s
perspective

behaviors

 Implementation

among BPR implementers &
others

Value Node Decision Node Chance Node

heuristics

 heuristics

Organizational structure,
 systems & behavior

heuristics

Current processes

designs
heuristics

 Process

Performance
criteria

competencies

IT enabling roles
heuristics

analysis of
10

Chapter 2 - Part 1 : Review of process design heuristics
2.2 Reengineering the Corporation

Having more emphasis on design heuristics, Hammer and Champy [Hammer et al. 93], two of the

reengineering pioneers, write:

“We have noticed striking similarities among the various re-engineered processes, similarities

that transcend industry type and even the identity of the particular process.”

The following sections review their heuristics.

2.2.1 Several jobs are combined into one

All the steps of a process should be compressed into one integrated job, performed by a single

person. If this is not possible under some situations (e.g. various steps must be performed in dif-

ferent locations or one person can not learn all skills) then the process should be assigned to a

team. The benefits of this heuristic include: eliminating hand-offs and their associated errors,

delays and rework and reduced process administration overheads.

2.2.2 Hybrid centralized/decentralized operations are prevalent

Decentralization provides more flexibility and a better service for the customer, but at the price of

redundancy, bureaucracy, and missed economies of scale. On the other hand, coordination and

economies of scale are the benefits of centralization. Providing instant access to expertise and

information, IT enables companies to operate as if their employees are self governed, while the

companies still get the benefits of centralization, (i.e. coordination and economies of scale). For

instance, the sales representatives of a company work independently. However, at the same time,

they can have instant access to the information, maintained in the central office, and as important
11

Chapter 2 - Part 1 : Review of process design heuristics
use a software that prevent them from quoting prices or specifying delivery conditions that their

company can not meet.

2.2.3 Work is performed where it makes the most sense

It is sometimes appropriate to shift a part of a process to the process customer or supplier. For

instance, a company which is manufacturing and maintaining electronic equipment, assigns some

of its repair activities which were previously performed by its technicians, to its customer. The

company also stores some of the spare parts at the customer’s site and manages the inventory

there.

2.2.4 The steps in the process are performed in a natural order

The process steps should be delinearized. In a traditional process, the steps are performed in a lin-

ear order; i.e. one task does not start until the previous one is completely finished. The linearity

among the tasks slows the work down. After reengineering, the process is delinearized and work

is ordered in terms of “what needs to follow what”. The benefits are: 1) jobs are performed simul-

taneously and 2) since the elapsed time between the earlier and later process steps is reduced, the

amount of rework due to a change in the later steps is decreased.

2.2.5 Reconciliation1 is minimized

Reconciliation is another form of nonvalue-adding work. Reengineering reduces reconciliation by

minimizing the number of external contact points in a process. Reconciliation is needed when

inconsistent data is received. Cutting back the number of external contact points in a process,

reduces the possibility of receiving inconsistent data which requires checking and matching.

1. Reconciliation means resolving the inconsistencies.
12

Chapter 2 - Part 1 : Review of process design heuristics
The example is the accounts payable process at Ford. Before reengineering, an employee received

the purchased goods, wrote their description in a form (i.e. receiving document) and sent it to

Ford’s account payable department. The accounts payable department compared the original

order, the invoice and the receiving document. If the items in these documents were the same then

the department would issue the payment. After reengineering, as soon as the order is issued it is

registered in a data base to which the employee who will receive the goods has access. When this

employee receives the goods, s/he compares them with the registered order. If the goods match

the order then s/he issues a check. This strategy eliminates the invoice which is one of the exter-

nal contact points, and hence removes the necessity of matching the order with its invoice.

2.2.6 Processes have multiple versions

In traditional organizations, a process is designed to meet the requirements of its most difficult

transaction. All the transaction types, regardless of their need or degree of complexity, are pro-

cessed in the same manner. After reengineering, each process has multiple versions. Each version

is designed to satisfy the requirements of a different transaction. A triage step is set at the begin-

ning of a multi-version process. The role of this step is to determine to which version a received

transaction should be assigned. For instance, IBM Credit has established three versions of the

credit insurance process. One version deals with routine transactions and is performed by the cus-

tomer with the help of a computer program, the other is for medium hard cases and is performed

by one of IBM Credit’s employee (called a deal structurer) and the last version which handles dif-

ficult transactions is performed by a deal structurer with the help from a team of specialists.

2.2.7 A Case Manager provides a single point of contact

Sometimes the process is too complex to be performed by an individual or a small team. In these

cases, it is suggested to assign an individual as the “Case Manager” for the entire process. The

“Case Manager” is responsible for answering the customer’s questions and solving his/her prob-
13

Chapter 2 - Part 1 : Review of process design heuristics
lems. In order to do so, the “Case Manager” should have access to all of the information systems

which the employees who perform the process use. Also s/he should have the ability to contact

these employees for further assistance. In the customer’s eyes, it seems that the “Case Manager”

performs the whole process, but this is not the case.

2.2.8 Workers make decisions

In a traditional process, at the point where a decision needs to be made, employees who perform

the process are not permitted to make that decision on their own. Instead, they need to go up the

managerial hierarchy for the decision. In a reengineered process, an individual or a team who is

assigned to perform the process is also authorized to make decisions. In this way the process will

benefit from “fewer delays, lower overhead costs, better customer response, and greater empower-

ment for workers.”

2.2.9 Checks and controls are reduced

Preventing employees from abusing processes, traditional organizations fill each process with

checking and control activities. Establishing these non-value added control points along a process

increases the process duration and cost. Reengineering separates checking and control steps from

each individual process. Checks then are performed in an aggregate, random and deferred man-

ner. For instance, in a typical purchasing process, the purchasing department checks the signature

of the person requesting an item to ensure that person is authorized to acquire the goods in the

dollar amount specified and to verify that the department’s budget is sufficient for the bill. After

reengineering, this control activity is removed from the purchasing process. Instead, several

instances of the purchasing process is controlled randomly at the end of the month. This strategy,

however, “more than compensates for any possible increase in abuse by dramatically lowering the

costs and other encumbrances associated with the control itself.”
14

Chapter 2 - Part 1 : Review of process design heuristics
2.3 Process Innovation

[Davenport 93] recognizes the importance of organizational and technological constraints in the

heuristics implementation. He characterizes his heuristics based on process types, e.g. order man-

agement processes, marketing processes and so on. In this section, we review his heuristics for

each process type.

2.3.1 Order management processes

2.3.1.1 Case manager

An individual or a team is assigned to perform the entire process. The level of empowerment of

the case manager and the information s/he should have access to (e.g. production scheduling and

pricing policies) must be decided.

The heuristic is very similar to 2.2.1. However, to some extent, it encompasses the concept dis-

cussed by heuristic 2.2.7.

Davenport attempts to provide some guidelines for the successful application of this heuristic.

The concept of case management was practiced in manufacturing many years before the rise of

reengineering, but few firms had positive results. “Assembly-line” model (i.e. breaking the

work into operations and assigning each operation to an employee) seems to be more effective

for routine tasks in manufacturing.

On the contrary, service industries employed case management successfully. In services,

“assembly-line” model leads to buffers (inbox and outbox), communication interface and con-

sequently longer process duration.
15

Chapter 2 - Part 1 : Review of process design heuristics
2.3.1.2 Order segmentation

Companies categorize their orders by complexity. Straightforward orders can be processed by

computer and the rest are processed by case managers. Similar to 2.2.6.

2.3.1.3 Customer participation

Parts of order management process such as entering, tracking, configuring, and/or scheduling the

order are performed by the customers. Similar to 2.2.3.

2.3.1.4 Real-time process execution

At the highest level of customer service, order management demands real-time performance. For

instance, price and ship commitments should be made when the customer places an order. This is

usually possible only with computers that provide access to inventory databases and pricing algo-

rithms. Similar to 2.2.2.

2.3.1.5 Parallel processes

In order management process, credit checking and financing are separated from the rest of the

process and performed simultaneously. Similar to 2.2.4.

2.3.1.6 Process partnerships

Eliminating unnecessary transactions, exchanging work better suited to one partner than the other,

or changing restocking or payments triggers. This strategy allows firms to concentrate on the pro-

cesses of critical importance to their success. Similar to 2.2.3 and 2.2.5.
16

Chapter 2 - Part 1 : Review of process design heuristics
2.3.2 Other process types

For other types of processes, he did not itemize the heuristics. Instead, he described the common

approaches that were taken to reengineer each process type in a text format. In this section, we

highlight these approaches.

2.3.2.1 Marketing processes

1. Rapid evaluation of how advertising and promotion impact sales. This is possible by using

point-of-sale information gathering technologies.

2. Understanding and taking advantages of buyer behavior, e.g. individualized magazine pub-

lishing.

3. Identification of exceptions to normal patterns in data by employing expert logic.

4. Close partnerships with advertising agencies, data collection and database marketing firms.

This promotes faster flows of more useful marketing data to decision makers through joint

participation in activities such as design of data collection methods, development of analysis

tools, and even marketing of new tools and techniques.

2.3.2.2 Service processes

1. Providing fast service by using computer programs; e.g. insurance agents with laptop com-

puter can deliver real-time quotes and hotel customers can checkin and checkout without vis-

iting the registration desk. Similar to 2.2.2 and 2.3.1.3.

2. Individualization treatment of customers by having rapid access to the customer and order

information before or just after the customer calls to place an order, asks for information, and

so forth.

3. Controlling or at least monitoring of the factors that affect the service quality, e.g. Federal

Express predicts incoming package volumes on the basis of a criteria such as the day of week

and weather conditions to minimize unexpected factors that might delay package deliveries.
17

Chapter 2 - Part 1 : Review of process design heuristics
4. Separating the company’s performance from its monitoring and control. For instance, service

requests are received at central offices and then assigned to the company location that can best

fulfil the request. An example is Pizza-Hot where the central office takes the customer order

and assigns it to the geographically suited franchise for preparation and delivery. A central-

ized service enables companies to centrally monitor service quality and provides data that can

help them better plan new locations.

5. Performing part of the process during the move towards the customer’s site.

2.3.2.3 Research processes

1. Clear and measurable project objectives.

2. Rigorous communication throughout the organization and using a common vocabulary about

research projects and their status.

3. Close ties with firm’s strategic planning process.

4. Project management approach to manage the timing and duration of activities for which spe-

cialized resources will be needed.

5. Formal cross functional meetings.

6. Using computers in the field, scientists conduct research design and analysis in the field to

reduce the number of failed experiments linked to local conditions.

2.3.2.4 Engineering and design processes

1. Concurrent engineering or parallel process flow to reduce cycle time. Similar to 2.2.4.

2. Facilitating design for manufacturability and cost by: 1) use of computer programs, 2) com-

munication through cross functional teaming among designers and manufacturers, 3) formal

design standards and data models that specify preferred design and component choices.

3. Relevant process interfaces between engineering, sales and manufacturing. The examples are:

• Developing computer programs to help sales people understand how a change in the cus-

tomer order affects the product cost and delivery date. Similar to 2.2.2.
18

Chapter 2 - Part 1 : Review of process design heuristics
• Pre-engineering of a set of component designs that can be combined into many different

versions of products.

4. Reducing the number of changes in product development cycle.

2.3.2.5 Manufacturing processes

Process thinking have been applied to manufacturing processes for a long time. In this term, man-

ufacturing processes are, on average, probably one decade ahead of service or customer facing

processes. Most of the credit is due to the quality movements. Following is a number of common

strategies that are employed by companies to restructure their manufacturing processes.

1. Switching from batch processes to a cell-based work flow.

2. Saving more time and money in manufacturing by use of equipment maintenance expert sys-

tems which diagnose a complex equipment malfunction and recommend corrective action.

3. Flexible production tools.

4. Greater functional integration between manufacturing, sales, marketing, engineering, and

logistics.

5. Involve the provision of a higher level of service such as consulting, real-time commitments

and arranging optimum financing for the customer.

6. Use of MRP and MRP II for production control and material management and structuring

work so that teams build entire products rather than simple components. These strategies did

not turn out to be effective in practice.

7. Better interfaces between manufacturing and engineering, manufacturing and logistics, manu-

facturing and sales. For instance, using information from sales to drive manufacturing.

2.3.2.6 Logistical processes

1. Rich flow of communication and clear understanding among the supply chain agents.

2. JIT practices.
19

Chapter 2 - Part 1 : Review of process design heuristics
3. Having fewer suppliers enables easier communication and management of supply chain pro-

cesses.

4. Elimination of warehousing and finished goods inventory management by creating finished

goods to fill customer orders and shipping completed goods to customers.

5. Parallel processing of ancillary activities, e.g. site preparation and credit checking, in the sup-

ply chain process. Similar to 2.3.1.5.

6. Close relationships with third parties. The examples are:

• Shifting reordering and shelf management to suppliers. Similar to 2.3.1.6.

• Shifting the incoming inspection and testing of components to their suppliers. Similar to

2.3.1.6.

• Providing information about the most effective use of their products for customers.

• Consolidation of purchased components from other third parties, kited and packed to suit

customer requirements and JIT delivery.

2.4 Don’t Automate, Obliterate

These heuristics, presented by [Hammer 91], are similar to the ones that we reviewed in section

2.2.

1. Organize around outcomes, not tasks.

One person performs all the steps in a process and his/her job is designed around an objective

instead of a single task. Similar to 2.2.1.

2. Have those who use the output of process perform the process.

The person or department who uses a product or service, can perform the process (or part of the

process) that actually provides that product or service. For instance, by using expert systems,

departments such as accounting can make their own purchases. Similar to 2.2.3.

3. Subsume information-processing work into the real work that produces the information.
20

Chapter 2 - Part 1 : Review of process design heuristics
A person or department who produces the information can as well processes it. For instance,

the Ford’s receiving department which produces the information about the goods received, pro-

cesses this information instead of sending it to accounts payable. Similar to 2.2.3.

4. Treat geographically dispersed resources as though they were centralized.

IT enables coordination among separate divisions or employees. For instance, in order to coor-

dinate among its several purchasing units, the corporate office of Hewlett-Packard has estab-

lished and maintained a data base on vendors and their performance. All purchasing units use

this shared data base to issue their purchase orders. Similar to 2.2.2.

5. Link parallel activities instead of integrating their results.

Rather than integrating the results of the activities when they are completely finished, use

shared data bases and communication networks to coordinate these activities while they are in

process.

6. Put the decision point where the work is performed, and build control into the process.

Those who carry out the work should also monitor it and make decisions about it. Similar to

2.2.8.

7. Capture information once and at the source.

A piece of information should not be collected repeatedly. It should be once collected and

stored for all who need it. This will reduce delays, entry errors and overheads. Similar to 2.2.5.

2.5 Business Process Improvement

[Harrington 91] defined a detailed methodology for business process improvement with founda-

tions in “total quality management”. He described 12 heuristics to streamline a process. [Daven-

port 93] believes Harrington’s approach is different than the reengineering’s approach because:
21

Chapter 2 - Part 1 : Review of process design heuristics
• Harrington concentrates on step-by-step improvement of the existing process rather than chal-

lenging the initial process structure.

• Harrington considers the role of IT after a process has been improved.

Nevertheless, as we will see, some of the concepts behind Harrington’s heuristics are very close

to Davenport’s and other reengineering experts’.

1. Bureaucracy elimination. Minimizing delays, red tape, documentation, reviews and

approval.

2. Value added assessment. The recommendations to eliminate non-value added are:

• Eliminating rework by removing the causes of the errors.

• Eliminating movement of documents and information by combining operations, (similar to

2.2.1), moving people closer together, or automation.

• Minimizing waiting times by combining operations, balancing work loads, or automation.

3. Simplification; i.e. less tasks, stages and interdependencies. Simplification can be

achieved by:

• Combining tasks, to remove duplication and/or fragmentation. Similar to 2.2.1.

• Changing the orders of tasks, combining, or separating tasks, and even balancing the work-

load of different individuals to manage complex flows and bottlenecks.

• Preparing more understandable materials for presentation, establishment of meeting proto-

cols, and fewer meetings with less duration.

• Combining similar or consecutive activities.

• Reducing amount of handling by combining responsibilities or by substituting a call for

mail.

• Eliminating unused data.

• Eliminating useless copies of reports and letters.

• Refining standard reports.
22

Chapter 2 - Part 1 : Review of process design heuristics
4. Process cycle time reduction.

• Serial versus parallel activities. Similar to 2.2.4.

For instance instead of performing sequential reviews by design, manufacturing and pur-

chasing departments, the documents can simultaneously be sent to the reviewers or review-

ers can have mutual meetings.

• Changing activity sequence to decrease the involved physical moving of documents.

• Reducing interruption. The location of the agents who performed the critical activities

should be in a quiet area. Someone else must answer their phones.

• Improved timing of activities. For instance if the mail pickup is at 10:00 a.m., all outgoing

mail should be processed before 9:45 a.m.

• Location analysis. Where the activity is performed physically can have a strong effect on

cycle time, labor cost, etc. “As a general rule, the closer the process is located to the cus-

tomer, the better.” The benefits are economies of scale, stocking costs, equipment costs, and

utilization considerations.

• Providing working cells organized to fit a process in which a lot size of one is the produc-

tion plan. Similar to 2.3.2.5- step 1.

• Order the activities based on their priorities, communicate the result with the employees

and follow-up if the priorities are met.

5. Error proofing. Make it difficult to commit an error. For instance, use a computer program

that checks spelling.

6. Upgrading. Upgrade the process equipment and office layout and people skills.

7. Simple language.

• Preparing the documents with respect to the comprehension level of the audience.

• Using clear words and specifying the meaning if necessary.

• Using flowchart to show the procedures that take more than 4 pages of description.
23

Chapter 2 - Part 1 : Review of process design heuristics
• Using acronyms when it is frequently used in the document. Defining the abbreviation that

is used in a document.

8. Forms. Self explanatory forms, non-redundant information and well defined abbreviations.

9. Standardization. Adequate documentation is required to standardize the process.

10. Supplier partnerships.

“All processes are highly dependent on people outside the process who provide input in the

form of materials, information, and/or ideas.” In this respect, the following questions should be

asked:

• Does the process really need the input or get more than its need?

• Is the timing and entering point of the input correct?

• Is the input received in the best possible format and required quality?

11. Big picture improvement. So far the focus was on gradual change. In order to bring a sub-

stantial change, the process regardless of existing organizational constraint should be rede-

fined.

12. Automation and/or mechanization. Using information technology to automate the process.

2.6 Other authors

In this section, we list the heuristics proposed by other authors.

2.6.1 Methods to Help Reengineer Your Company for Improved
Agility [Ligus 93]

1. Reduce the physical distance between supply points, production, assembly and the customer

for the core products. Similar to 2.5- step 4- bullet 5.
24

Chapter 2 - Part 1 : Review of process design heuristics
2. Integrate processes and reduce setups using a zero based goal. Streamline the physical flow

within the factory. Physically couple successive operations in the chain of work, remove non-

value-adding functions, and induce velocity. Similar to 2.5- step 2.

3. Implement physical changes to place facilities close to sources of supply.

4. Form partnerships with fewer suppliers such that components can be delivered to satisfy real

demand. Similar to 2.3.2.6- step 3 and step 6.

5. Create short, direct lines of distribution to make it very easy for customers to place an order

and receive fast delivery.

6. Streamline and electronically link the information chain so that flow is direct-without inter-

ruptions and delays. Reduce business cycle times to the time it actually takes to efficiently

process information.

7. Induce fast communications and decisions throughout the organization by physically cluster-

ing functions needed to complete business cycles quickly. Tear down physical walls that stand

in the way of communications.

8. Recompose operational organizations with cells that address logical separations of business

cycles, containing multi skilled members, trained to do everything in the cell. Allow cell lead-

ers to be periodically chosen by cell members; give the members the responsibility for making

90 percent of the decisions. Employ effective use of automation, technology and techniques.

2.6.2 Business Re-engineering; a Strategy-driven Approach [Talwar
93]

1. Eliminating unnecessary activities and reducing the number of delays, e.g reviews, authoriza-

tions, inspections and hand-offs between departments. Similar to 2.5.

2. Minimizing the delays between processing stages by automating workflows.

3. Increasing flexibility by creating a multi-skilled workforce. Similar to 2.6.1- step 8.
25

Chapter 2 - Part 1 : Review of process design heuristics
4. Reducing duplication of effort and investment by forming stronger partnerships with custom-

ers and suppliers, sharing more key information and undertaking joint development activities.

Similar to 2.3.1.6 and 2.3.2.6- step 6.

5. Improving internal communications by bringing different organizational functions together to

speedup product and service development. Similar to 2.6.1- step 7.

6. Outsourcing activities which add no value but divert management time and energy.

2.6.3 Simple as ABC, What on Earth is Business Process
Reengineering? [Booth 94] [Booth 95]

1. Integrate to achieve lead time compression by:

• initially linking order entry with manufacturing and eventually linking design and opera-

tions.

• extending the links into customers and suppliers. For instance, a customer could directly

enter a design on the company’s systems, and the production schedules (both internally

and among suppliers) would be updated. Similar to 2.6.1- step 5.

2. Plan for concurrent marketing, manufacturing process and product design process so that a

product which meets the needs of a market segment can be designed and produced quickly.

This is achievable by decreasing the fragmentation on functional lines in the organization.

Similar to 2.6.2- step 5.

3. Remove the fragmentation in the production process. Then remove the managerial hierarchy

which was in place to manage the fragmented process. Similar to 2.2.1 and 2.2.8.

4. Make information accessible to staff so that they can perform their work independent of refer-

ral upwards to middle management. Similar to 2.2.2 and 2.2.8.

5. Plan for designed-in quality rather than inspected-in quality. This is achievable by having

concurrency between product design and manufacturing process.
26

Chapter 2 - Part 1 : Review of process design heuristics
6. Reorganize so that one department or individual is responsible for the whole process to mini-

mize departmental handovers and to ensure a clear accountability. Similar to 2.2.1.

7. Arrange concurrent teams or cells to provide quality and timeliness. Basic scheduling and

quality control is handled within the team. Similar to 2.6.1- step 8.

8. Have a modular and reusable product design to allow customized features to be contained in a

single part of the design.

9. Have a product structure that allows variety to be introduced at the end of the manufacturing

process as opposed to the beginning.

10. Have non fragmented staff roles. Similar to 2.2.1.

2.6.4 Useful hints [Miller 95]

1. Eliminate bottle necks by speeding up the slowest activity in the process.

2. Reduce the number of steps, complexity levels, and people. Similar to 2.5.

3. Reduce defects to prevent rework.

4. Increase flexibility by envisioning the parameters of possible change when designing the pro-

cess, using adaptable people and designing processes to accommodate future change.

5. Eliminate non-value added activities, assets, and costs. Similar to 2.5.

6. Decentralize unless there are compelling reasons such as economies of scale and critical

resources to do otherwise. If you centralize make sure this does not comprise service, quality

or flexibility.

7. Streamline, simplify, automate and integrate. Similar to 2.5.

8. Use cellular and self-directed work teams to handle an entire process. Similar to 2.2.1.
27

Chapter 2 - Part 1 : Review of process design heuristics
2.6.5 Principles of Reengineering [Klein 95]

1. Rethink the boundaries between your processes and those of your suppliers and customers

and integrate them with their processes. Similar to 2.3.1.3 and 2.3.2.6- step 6.

2. Consider outsourcing a process if your costs are higher than that of an outsource vendor and if

you add no more value than the outsource vendor would add to that process. Similar to 2.6.3-

step 6.

3. Give more responsibility to the front line people and increase flexibility. This approach often

leads to decentralization. However, providing shared databases, expert systems and so on,

information technology makes it possible to decide on centralization or decentralization on

the basis of what makes the most sense for the business. Similar to 2.2.2.

4. Consider segmenting process inputs and creating parallel process flows to simplify the pro-

cess (similar to 2.2.6), or create entirely new products or services.

5. Resequence activities where possible to eliminate the need for separate subprocesses. For

instance, Disney provided automated kiosks at which customers could prepay. This reduces

the time spent in queues. Similar to 2.2.2.

6. Simplify interfaces and information flows. For instance, Loews Co. allows its customers to

find out what movies are playing and their show times, order a ticket by phone, pay with a

credit card, and then pickup their tickets at an ATM or special line in the theatre lobby. For $1

more they can reserve a seat. These innovations improve customer service and enable Loews

to measure the true demand for various films, so they can better schedule their theatres and

better select films for specific audiences. Similar to 2.3.1.3.

2.6.6 How to Make Reengineering Truly Effective? [Gilmore 95]

1. Design for Flexibility. Rather than designing a process in considerable detail, build it in away

that it can change to meet the customer needs over time.
28

Chapter 2 - Part 1 : Review of process design heuristics
2.7 Conclusion

2.7.1 Heuristics; their positive aspects and limitations

Heuristics are useful at the starting point of process design. They identify various attributes of

successful processes and enable companies to look for alternative ways of design. For instance, a

company attempting to redesign its order management system, for example, might look at “A

Case Manager provides a single point of contact” Hammer et al. 93, “Several jobs are combined

into one” [Hammer et al. 93], or “customer participation” [Davenport 93].

However, in general, heuristics are ambiguous and unreliable. In the following, we explain these

two characteristics.

1. Heuristics are ambiguous.

• The benefits of a heuristic (the problems that it solves or improves) are not clearly stated.

This is an impediment to understanding the applicability of the heuristic. For instance the

benefits of having a multi-version process (2.2.6), customer participation (2.3.1.3) or

combining similar or consecutive activities (2.5- step 3) are either not stated or muddled.

• The solution technique that the heuristic recommends is vague.

For instance, 2.4 states that work should be ordered in terms of “what needs to follow

what” but does not explain how one can determine which activity should succeed the other

one.

Another example is 2.2.3 which suggests to shift the responsibility of performing an activ-

ity from one agent to another who is more “appropriate”. The issue is: how can we decide

that an agent is more “appropriate” than the other? In chapter 3 (section 3.3.3.2), we discuss

the issue of appropriateness in more detail.

2. Heuristics are unreliable.
29

Chapter 2 - Part 1 : Review of process design heuristics
Using a scenario, the author describes some perspectives (such as the process cost or duration)

that are improved by the use of the heuristic. The heuristic is able to improve these perspec-

tives, but only under some conditions, pertaining to that specific scenario. These conditions are

mostly not expressed. This approach will lead to an unreliable heuristic, in a sense that the heu-

ristic might not provide the same benefits under a different scenario.

For instance, heuristic 2.2.1 suggests to assign the entire process to a person or a team to

improve hand-offs, delays, reworks and administrative cost. It does not discuss under what con-

ditions this suggestion would improve these aspects.

Regarding the same concept, [Davenport 93] (as mentioned in 2.3.1.1) specifies some abstract

conditions:

Whereas, assigning one person or a team to routine and structured tasks in manufacturing

industry has not proven to be efficient, the idea has worked well for service industries in

which fragmented roles lead to buffers, communication interfaces and longer process dura-

tion.

However, further elaboration is yet required to explain why the idea is successful for service

industries and why it is inefficient for routine jobs. Chapter 3 elaborates this issue.

The above characteristics, ambiguity and unreliability, prohibit the heuristics to be consistently

applied across various scenarios. The goal of this thesis is to transform process design expertise

into an engineering discipline where its principles can be repeatedly applied in a consistent man-

ner. We achieve this goal by taking the following approach.

We discover the foundation of a portion of design knowledge and develop a formal model of this

foundation. The formal model will be composed of a terminology and the definitions for each of

the terms- that every user can understand. Such a model will ensure the consistent and reliable

application of the design principles across various enterprises. The approach which is called

“ontological1 engineering” [Fox 94], will be explained in chapter 4.
30

Chapter 2 - Part 1 : Review of process design heuristics
2.7.2 Emerging themes from the reviewed heuristics

The reviewed heuristics directly suggest or imply some general classes of change. Following, we

identify three of them and specify the ones which are the focus of the thesis.

2.7.2.1 Agent assignments; the focus of chapters 3 and 4 of this thesis

A large number of heuristics propose different ways of assigning agents to perform activities.

Their objective is to improve efficiency. This group includes the heuristics which suggest:

1. assigning an individual (with the help of computer program) or a team to perform a set of

activities, or

2. shifting the responsibility of performing an activity from an individual or a group to another.

The examples are heuristics 2.2.1, 2.2.8, 2.3.1.1, 2.3.1.3, 2.3.1.6, 2.3.2.5- step 6, 2.3.2.6- step 6,

2.4- step 1, 2.4- step 2, 2.4- step 3, 2.4- step 6, 2.5- step 2, 2.5- step 3, 2.6.2- step 1.

Apart from being directly recommend by many heuristics, suggestions 1 and 2 seem to be a key

feature of some of the other heuristics. For instance:

• “Processes have multiple versions” has two components, (see section 2.2.6):

1. Breaking the process into different versions so that each version can be performed either

by an individual or by a team.

2. At the beginning of a multi-version process, there should be a step that assigns each

received transaction to one of the process versions.

As we can see, “assigning each version of the process to a team or an individual” has the key

role in the first component.

1. An ontology is a formal description of entities, properties of entities, and relations among entities; it forms a shared terminol-
ogy for the objects of interest in the domain, along with definitions for the meaning of each of the terms [Fox 94].
31

Chapter 2 - Part 1 : Review of process design heuristics
• “Hybrid centralized/decentralized operations are prevalent” describes a case in which a

software system prevents the sales representatives from quoting prices that their company can

not meet, (see section 2.2.2).

In this example, the software actually enables one agent to perform the activity of stating a

price and the activity of reviewing the price.

The general idea offered by this class of heuristics is the most dominant one. For this reason, in

chapters 3 and 4 of this thesis, we direct our efforts towards it; we will identify the underlying prin-

ciples of this class of heuristics and develop a formal model of them.

2.7.2.2 Case manager, the focus of section 5.2

In order to improve customer service, these heuristics are recommended:

• For each transaction, there should be a single agent to answer the customer queries. Such an

agent is referred to as a “case manager” [Hammer et al. 93].

• Case managers should have instant access to all the information systems used by those agents

who process the transaction.

The examples are heuristics 2.2.7 and 2.3.1.1. In chapter 5 (section 5.2), we develop a formal

model that can evaluate the effectiveness of the “case manager” role in an existing design.

2.7.2.3 Concurrency in information intensive processes

The heuristics in this group deal with ordering activities to increase concurrency. They illustrate

some processes that before re-engineering their activities were performed sequentially and after

re-engineering, some of their activities are performed simultaneously. The examples are heuris-

tics 2.2.4, 2.2.9, 2.3.1.4, 2.5- step 4.

The heuristics do not explain the criteria based on which they determine whether or not two activ-

ities can be performed concurrently. However, the supporting examples of these heuristics are
32

Chapter 2 - Part 1 : Review of process design heuristics
mostly information intensive processes. By looking through these examples, we infer that one of

the determinant factors is “information dependency between the activities”; i.e. it might be possi-

ble to perform two activities concurrently, if one does not produce a transaction which contains

some information used by the other. In this thesis, we will not target this group of heuristics.
33

Chapter 2- Part 2

Tools
Many tools have emerged to support enterprise design. In this part, we classify these tools, and

review one of them that automates some process design heuristics.

2.8 Classification
Through implementation of an enterprise design many difficulties can occur. In order to ascertain

the major difficulties and identify the key areas of research that can attack these problems, a survey

in the UK was conducted [Weston 96]. Some important areas of research needs that were identified

include:

• improved conceptualisation and analysis methods, coupled with improved business metrics

• improved support for ongoing business analysis and system development

To support these needs, the models and tools which assist enterprise design analysis are very

important.

[Weston et al. 95] classifies tools with respect to the following dimensions:
36

Chapter 2- Part 2 : Tools
• Life-phase. Tools are used in the strategic planning of an enterprise, conceptual design,

detailed design, implementation and execution.

• View (or perspective). The focus of the tool is on the structure and behavior of an enterprise

from a particular view point such as information.

• Genericity. Genericity can be evaluated on a continuum. At one end of the continuum, the

tool is tailored to a single enterprise, while at the other end it can be generally applied to busi-

ness processes.

• Consistency. Consistency must be maintained between different views and within each view

with respect to the life-phase dimension.

[Gruninger 95a] characterizes computer-based BPR tools. His characterization has two roles: 1) it

can be used to evaluate the existing tools for enterprise design, 2) it provides a set of requirements

for BPR software. In general, the tools can be characterized by their:

• Problem solving capability. The problem solving capability of a tool can be identified by

specifying the problem that the tool solves and the solution to the problem. This includes the

definition of what is the appropriate input to each tool and what is the correct output.

For a given tool, different reasoning tasks fall on different points in the spectrum of automation.

At one end of the spectrum, there are tools which provide visualizations of the enterprise mod-

els that enable easier communication and provide comprehension of the enterprise and its prob-

lems. Enterprise knowledge is gathered, usually by structured interviewing from process

owners and then represented graphically. These tools can support the analysis by facilitating

understanding and communication for their users. Examples are Apache, Business Improve-

ment Facility and RADitor, all briefly discussed in [Spurr et al. 94], Workflow Factory Product

Information, Cosmo, Extend+BPR, and Optima! Express, all briefly discussed in [Business

Process Reengineering Tool Repository 96], BSSM [Clegg et al. 96].
37

Chapter 2- Part 2 : Tools
As we move along the spectrum, there are BPR tools that analyze a given enterprise model. The

tool might evaluate models from a particular perspective. Examples are ISO 9000 Quality

Advisor [Kim et al. 94] which deduces whether or not an enterprise is ISO 9000 compliant and

Activity-based Costing Advisor [Tham et al. 94] which evaluates the cost associated with some

set of activities. The tool might determine the value of some proposition at a point in the future,

e.g. the quantity of a resource after performing a set of activities. It might provide guidance for

the user; e.g. the reasons when a particular enterprise model fails to satisfy some property and

what should be changed in the enterprise model so that it does satisfy the property.

Current simulation tools evaluate alternative models with respect to a particular behavior. Sim-

ulation allows the users to experiment and observe the effects of making parameter or structural

changes on the process behavior. It helps in the selection of target process for the redesign stage,

experimenting with different process alternatives before the final choice, testing the functional-

ity and impact of the newly designed process before implementation, communication and

employee training. However it is the users’ responsibility to produce the set of design solutions.

Some current simulation tools are Business Design Facility, Caddie, Ithink, Object Manage-

ment Workbench, Processwise Workbench, SES/WORKBENCH and Vensim, all discussed in

[Spurr et al. 94], Dynamic modelling for reengineering organizations [Vredde et al. 96],

Bonapart, Process Charter, Clear Process, Gensym’s ReThink and DPA, all discussed in [Busi-

ness Process Reengineering Tool Repository 96], Design/IDEF (Meta software Corp., a Cam-

bridge, Mass. Company) [Arend 93], and GAMEVIEW software [Laakso et al. 95].

Some automated tools generate alternative solutions. However the evaluation is by the users.

An example is Discontinuous Transformations [Wagner et al. 94].

In the most automated form of analysis, the tools perform automated design with particular

properties.
38

Chapter 2- Part 2 : Tools
• Supporting enterprise models. An enterprise model is a computational representation of the

structure, processes, information, resources, goals, and constraints of an organizational system

[Gruninger et al. 95b].

In general, there are several views in an enterprise. [Hirshheim 86] contrasts several alternative

views (office activities, office functions, office semantics, decision making, work roles, transac-

tional, and language action) through which an enterprise can be conceived. Some views are

more analytical while others are more interpretive.

Ideally a rich enterprise model enables us to analyze the enterprise from the various views.

However, not all of the views need to be modeled to enable an individual type of analysis.

According to [Fox 93], the competence of an enterprise model can be evaluated by its degree of

problem solving support; i.e. what questions can the representation answer or what tasks can it

support?

In addition to competency, [Fox 93] recognizes the following important issues concerning an

enterprise model:

Perspicuity: is the representation easily understood by the users?

Granularity: does the representation support reasoning at various levels of abstraction and

detail?

Consistency: given the set of possible applications of the model, can the model’s contents be

precisely and rigorously defined so that its use is consistent across the enterprise?

Extensibility: can new data items be added to it and the properties of existing data items be

extended, without having to redesign the entire representation method?

• Software functionality. The issues such as the tool’s ability to capture the model (i.e. formu-

late the model) and validate it (i.e. perform completeness and consistency checking), work

with other tools, translate the utilized terminology to different users, integrate partial models

into an integrated model of enterprise, and work with incomplete data are considered under
39

Chapter 2- Part 2 : Tools
software functionality. These are the capabilities of the tools that are independent of the rea-

soning tasks, required for problem solving.

• Visualization. Visualization environment should be adequate for communicating the essential

information provided by the tools.

• The intended users. Each class of users- external consultant, internal consultant, manager,

employee- specifies a different set of requirements on tools’ different characteristics such as

modelling, analyzing, visualization, software functionality and implementation.

2.9 Discontinuous Transformations (DT)

In this section, we review a BPR tool to which their developers, [Wagner et al. 94], refer as DT.

There is a lack of tools that automatically identify design problems of a given process and/or gen-

erate solutions. In this thesis, we will develop a tool to which we refer as the Process Integration

advisor, (see chapter 6). The Process Integration advisor encapsulates a portion of design exper-

tise; given a process model, the advisor generates agent assignment alternatives which will

improve the process agent setup time and finds the design problems with respect to information

flow, case management and agent constraints.

Among the existing tools, we found only one tool, DT [Wagner et al. 94], that- like our advisor-

proposes solutions to improve a given process design. For this reason, DT makes an interesting

candidate for the review.

2.9.1 Review

DT’s main objective has been defined as “formalization and developing a rationale to the tradi-

tionally ad hoc process of performing BPR” [Wagner et al. 94].
40

Chapter 2- Part 2 : Tools
The input to DT is a process model. In this model, the process subactivities, work objects (defined

as inputs to and outputs of the subactivities) and the current agents of these subactivities are spec-

ified. Subactivities are classified as tasks or decisions and the agents are classified as initiators,

internal operators, recipients and external customers.

The output of DT is new agent assignments and/or new temporal relationships for the subactivi-

ties, on the basis of the following heuristics.

1. A subactivity which is performed by internal operator should be assigned to its initiator and if

this is not possible to its recipient.

2. All the successive subactivities of the same type (i.e. task or decision) should be aggregated

into one activity. If one of the current performers is an external customer then it is preferable

to assign this aggregate activity to that external customer.

3. If two successive task and decision subactivities act on the same set of work objects then they

should be aggregated.

4. A master coordinator should be assigned to the process.

5. The subactivities that have no or a small number of work objects in common, should be per-

formed concurrently.

2.10 Conclusion

Formal models and tools that capture the process design expertise are scarce. Processes should

often be redesigned to respond to their continuously changing environment. Design of new pro-

cesses is complex and requires many skills. Certainly, one tool can not satisfy all the requirements

of this iterative, ongoing and complex process. A variety of tools are required to support the

design. The majority of existing BPR tools are based on simulation. The current simulation tools

are useful; they allow users to observe the effects of making parameter changes on the process

behavior. Nevertheless, they do not embed the process design expertise and thus are not capable
41

Chapter 2- Part 2 : Tools
of automatically identifying the process design problems and generating alternative solutions. In

order to expedite the process design, we need definitive tools that encapsulate the process design

knowledge. It is important to note that the tools that simply implement ambiguous heuristics do

not respond to this need. For instance, consider DT (see section 2.9.1). Even though, it contains

five process design heuristics and generates alternative solutions, typically, its solutions are not

understood or consistently interpreted by different users. This problem is due to the fact that DT

lacks semantics; i.e. it employs some terms for which no meaning is stated. For instance, what is

the meaning of the term “aggregation” in its second heuristic? Does the term “successive”,

employed by the second and third heuristic, imply a causal relationship between the subactivities

or a temporal relationship (i.e. before/after relationship)? On the other hand, the underlying rea-

sons for DT’s heuristics are not clear. For instance, what problem will be solved by moving a sub-

activity to the initiator or to the recipient and why is it more desirable to move it to the initiator

rather than to the recipient?

Our tool, the Process Integration advisor (see chapter 6), is a definitive tool which embeds a por-

tion of process design expertise. Given a process, it automatically proposes alternative agent

assignments that improve agent setup time and finds the design problems with respect to informa-

tion flow, case management and agent constraints. This advisor is definitive because it is based on

logical models with two important characteristics. First, these models provide the meaning for

each of the employed terms. Second, they precisely state the problems that they can solve. These

characteristics assure the consistent usage of the terms across different users (even the ones who

are not used to that terminology), and give an opportunity to users to evaluate the tool’s appropri-

ateness for their needs.
42

Chapter 3

Analytical model of agent setup time
The goal of this chapter is to develop an analytical model of agent setup time. The model high-

lights different components of agent setup time and allows us to explore various strategies which

eliminate or improve some of these components.

The process design heuristics, reviewed in chapter 2- part 1, were often unreliable and/or ambigu-

ous. Such heuristics cannot form the basis of a robust model of business process reengineering. In

order to create a precise and reliable model of BPR, the underlying principles of these heuristics

should be identified. To achieve this goal, we focus on a group of heuristics which suggest the

assignment of a number of activities to an employee (with the help of a computer program) or to a

team, combine some activities, or shift some of the responsibilities of one employee or depart-

ment to another. We develop an analytical model which enables us to examine the effect of differ-

ent strategies on agent setup time. The model and strategies (which will be described in the

following pages) clarify the intent of this group of heuristics.
45

Chapter 3 : Analytical model of agent setup time
3.1 Agent setup time model

Let us consider two activities Aci and Acj which are respectively performed by two agents, Agi and

Agj:

 {Aci, Agi} --- Tij ---> {Acj, Agj}

where Tij is the transaction from Agi to Agj that causes Agj to perform activity, Acj.

Agent setup exists if an agent requires some amount of preparation before the activity Acj can be

performed.

One type of preparation is understanding the transaction, Tij, on which the activity, Acj, is to be

performed. For example the transaction is the product’s requirement and the activity might be

design. Understanding the transaction entails understanding the information provided in the prod-

uct’s requirement. It is often the case that a transaction contains information that is unnecessary

(i.e. redundant and/or irrelevant) for the task to be performed. Nevertheless, the receiving agent

does not know that the information is unnecessary until s/he assimilates it. Therefore we define

our agent setup time model as follows:

PTj Tij() PTj Necessary Tij()() PTj Unnecessary Tij()()+= (EQ 1)

where PTj(Tij) is the agent setup time and Necessary(Tij)/Unnecessary(Tij) is the subset of infor-

mation in Tij that is necessary/unnecessary to the activity from the performing agent’s perspective.

Obviously, one way of reducing setup time is to remove all Unnecessary(Tij) from Tij.

It is also the case, that a transaction may not provide all the information necessary for the agent to

perform the activity. Therefore, there will be some amount of information gathering (e.g. identify-

ing, locating and completing) that has to be performed prior to performing the activity. For

instance, the transaction is the product’s design and the activity is reviewing the design from a
46

Chapter 3 : Analytical model of agent setup time
manufacturability perspective, performed by a manufacturing engineer. Features of a product con-

sidered insignificant to the product’s designer but crucial to manufacturing may not appear in the

design. After receiving the design, the manufacturing engineer discovers that s/he needs more

information to review the design. On the other hand, the designer might use a term that is unfamil-

iar or ambiguous for the manufacturing engineer who reviews the design. The manufacturing

engineer needs to understand the term’s definition before proceeding with the review.

We extend our model to include information gathering as follows:

PTj Tij() PTj Necessary Tij()() PTj Unnecessary Tij()() PTj Missing Tij()()+ += (EQ 2)

This model is still incomplete; the amount of time that it takes an agent to prepare to perform a

task may also include the time it takes to learn how to perform the task. For instance, the product

design might include some electronic features. The manufacturing engineer who reviews the

design from a manufacturability perspective may not be familiar with the electronic requirements

contained in the transaction and will have to learn some standards before s/he can process the

transaction’s information correctly.

Let SK(Agj, Acj) be the skill required by Agent j to perform Activity j. SK(Agj, Acj) consists of the

skill that already exists in Agent j, SKe, and the “new” skill that Agent j must acquire in order to

perform the task, SKn(Agj, Acj).

SK Agj Acj,() SKe Agj Acj,() SKn Agj Acj,()+= (EQ 3)

We can now refine the model to include this skill acquisition:

PTj Tij() PTj Necessary Tij()() PTj Unnecessary Tij()() PTj Missing Tij()() PTj SKn Agj Acj,()()+ + += (EQ 4)

EQ 4 presents our agent setup time model. The model allows us to explore different strategies that

can reduce the agent setup time.
47

Chapter 3 : Analytical model of agent setup time
3.2 Manufacturing process strategies

In this section, we use the agent setup time model (as given below):

 PTj Tij() PTj Necessary Tij()() PTj Unnecessary Tij()() PTj Missing Tij()() PTj SKn Agj Acj,()()+ + +=

to explain the success of various manufacturing process methods. Let us use the following nota-

tion for the rest of this chapter:

Agent setup time PTj (Tij) for strategy stg is denoted as PTj
stg(Tij). For instance, the agent

setup time for the strategy “Adam Smith’s division of labor principle” and the strategy

“Transfer line” are represented by PTj
Smith(Tij) and PTj

Transfer Line(Tij) respectively.

Notation:

Consider the Adam Smith’s “division of labor principle” [Smith 1850] and the prototypical pin

factory that he described:

One man draws out the wire, another straightens it, a third cuts it, a forth points it,..., and the

important business of making a pin is, in this manner, divided into about eighteen distinct oper-

ations, which in some factories, are all performed by distinct hands, though in the others the

same man will sometime perform two or three of them.

Consistency and repeatability were the keys to the division of labor success. In the pin factory,

since all the transactions (i.e. the first, second, third,..., nth pins) were the same, the worker did
48

Chapter 3 : Analytical model of agent setup time
not need to understand the information in every received transaction, separate the unnecessary,

gather the missing information, or learn a new skill before he performed the task. Using the above

notation we have:

PTj
Smith Necessary Tij()() 0=

PTj
Smith Unnecessary Tij()() 0=

PTj
Smith Missing Tij()() 0=

PTj
Smith SKn Agj Ac, j()() 0=

(EQ 5)

(EQ 6)

(EQ 7)

(EQ 8)

Thus we have:

PTj
Smith Tij() 0= (EQ 9)

In summary, receiving identical transactions leads to a zero value for agent setup time.

In the following, we identify five strategies that minimize the agent setup time, PTj(Tij). All of

them except the fifth one minimizes PTj(Tij) through minimizing part specific information. The

fifth way allows a certain amount of variety in the received transactions. However since the scope

of variety is already known, PTj(Tij) is very small. These strategies are:

1. Batch like orders

2. Transfer line

3. Common components

4. Standard interfaces

5. Computer controlled equipment

The following sections describe these strategies.
49

Chapter 3 : Analytical model of agent setup time
3.2.1 Batch like orders

Although agent setup time for changing from one batch to a different one might be greater than

zero, the value of agent setup time for individual items within a batch is zero. The reason is,

within each batch all the items are the same and consequently there is no part specific information

that needs to be understood. Using the previous notation (presented in section 3.2), we will have:

PTj
Batch Tij() 0= (EQ 10)

Equation 10 states that the value of agent setup time within a batch is zero.

3.2.2 Transfer line

Creating a transfer line that works on one part type only and setting up all the machines to work

on that part type. For such a transfer line, there is no part specific information. Thus the value of

agent setup time is zero. Using the previous notation (presented in section 3.2), we will get:

PTj
TransferLine Tij() 0= (EQ 11)

3.2.3 Common components

Designing different products that use the common components and are differentiated at the end of

the production process. Until the point that the products are differentiated, the received transac-

tions are the same and therefore the agent setup time is zero. Using the previous notation (pre-

sented in section 3.2), we have:

PTj
Common Tij() 0=

(EQ 12)
50

Chapter 3 : Analytical model of agent setup time
3.2.4 Standard interfaces

Having standard interfaces between the components of assembly typed products. Standard inter-

faces greatly reduce the difference from one received transaction to another, minimize the part

specific information required to join various components and thus lead to a value for setup time

which is more than zero but small. Using the previous notation (presented in section 3.2), we will

have:

PTj
StandardInterfaces Tij() 0≅ (EQ 13)

3.2.5 Computer controlled equipment

Computer Controlled equipment is capable of producing various parts within a pre-defined set.

For all work pieces inside the set, computer programs are already written, tested and stored in a

microprocessor-based controller. In this situation, receiving incomplete and unnecessary part spe-

cific information is inconsequential. Therefore, using the previous notation (presented in section

3.2), we have:

 PTj
ComputerControlledEquip Unnecessary Tij()() 0=

PTj
ComputerControlledEquip Missing Tij()() 0=

(EQ 14)

(EQ 15)

Since each part is different than the previous one, some time is required to process the part spe-

cific information, prior to the manufacturing operation. The part specific information processing

time is greater than zero but not significant. Thus:

PTj
ComputerControlledEquip Necessary Tij()() 0≅ (EQ 16)

If we assume that agents do not forget what they have learned then a multi tasking worker who

has already learned the required skills for a specific set does not need to obtain new skills to pro-

duce the products inside the fixed limits of this set. Hence, we have:
51

Chapter 3 : Analytical model of agent setup time
PTj
ComputerControlledEquip SKn Agj Ac, j()() 0≅ (EQ 17)

As a result, the value for agent setup time is more than zero but very small:

PTj
ComputerControlledEquip Tij() 0≅ (EQ 18)

3.3 Agent/activity design strategies

Agents can be assigned to activities in many different ways. A subset of these ways can actually

improve the agent setup time. We refer to this subset as “agent/activity design strategies”.

Within service processes, a certain amount of context specific information such as customer infor-

mation, product requirement and part design is associated with each transaction, Tij. The context

specific information makes each transaction different than the other one. Since in these cases

there is no repetition, the above strategies that rely on consistency can not decrease the agents’

setup time. Agents need to understand information, prior to performing their activities. In fact, the

context specific information might lead to large agent setups; i.e. the ratio of preparation or setup

time for each activity is much greater than a given percentage of processing time.

Given the agent setup time model,

 {Aci, Agi} --- Tij ---> {Acj, Agj}

PTj(Tij) = PTj(Necessary(Tij)) + PTj(Unnecessary(Tij)) + PTj(Missing(Tij)) + PTj(SKn(Agj, Acj))

how should we modify agents assignments to reduce agents setup time?

In the following sections, we answer the above question.
52

Chapter 3 : Analytical model of agent setup time
3.3.1 Assign one agent to perform activities Aci and Acj

Let us use Agi Agj= to denote the strategy stating that one agent performs both Aci and Acj and

use Agi Agj≠ to denote the strategy stating that two different agents perform Aci and Acj.

At first, consider a general case when the agents Agi and Agj are different. Since Agi (e.g. the

agent who provides product requirement) might not understand the data requirements of Agj (e.g.

the designer), the completeness and relevancy of the information in the transaction (produced by

Aci) cannot be assured. Using the above symbols and the notation from section 3.2, we have:

PTj
Agi Agj≠ Necessary Tij()() 0>

PTj
Agi Agj≠ Unnecessary Tij()() 0>

PTj
Agi Agj≠ Missing Tij()() 0>

(EQ 19)

(EQ 20)

(EQ 21)

Now consider the case that one agent performs activities Aci and Acj. In this case, the agent knows

what information is necessary or unnecessary to perform Acj and therefore s/he rarely provides

unnecessary information or misses the necessary one.

Performing Aci, the agent already assimilates the relevant context specific information. Under the

assumption that agents do not forget what they already absorbed, there is no need that the agent

understands the information once again to perform Acj.

Thus we have:

PTj
Agi Agj= Necessary Tij()() 0=

PTj
Agi Agj= Unnecessary Tij()() 0=

PTj
Agi Agj= Missing Tij()() 0=

(EQ 22)

(EQ 23)

(EQ 24)
53

Chapter 3 : Analytical model of agent setup time
We assume the time required to learn new skills is the same, no matter that Agi and Agj are differ-

ent agents or the same.

From the above discussion, we can deduce:

PTj
Agi Agj= PTj

Agi Agj≠< (EQ 25)

Equation 25 states that PTj
Agi Ag= j Tij() (i.e. the agent setup time when the agents of Aci and Acj are

the same) is less than PTj
Agi Agj≠ Tij() (i.e. the agent setup time when these agents are not the same).

3.3.2 Assign an agent with the help of a computer program to
perform activities Aci and Acj

We use AgComp to denote the strategy stating that one agent with the help of computer program

performs both Aci and Acj.

One agent might not have all the required skills to perform both Aci and Acj. In this case, it might

be possible that some or all of the skills required to perform Aci and/or Acj to be encapsulated in a

computer program. A computer program can rapidly direct the performing agent to enter the com-

plete and necessary information required to perform Acj and assist the agent to perform Aci/Acj.

Therefore, using the above symbols and the notations from section 3.2 and section 3.3.1, we have:

PTj
Agi Agj= Necessary Tij()() 0=() PTj

AgComp Necessary Tij()() PTj
Agi Agj≠ Necessary Tij()()< <

PTj
Agi Agj= Unnecessary Tij()() 0=() PTj

AgComp Unnecessary Tij()() PTj
Agi Agj≠ Unnecessary Tij()()< <

PTj
Agi Agj= Missing Tij()() 0=() PTj

AgComp Missing Tij()() PTj
Agi Agj≠ Missing Tij()()< <

(EQ 26)

(EQ 27)

(EQ 28)

For instance, a human agent might not have the design skills and at the same time know all the

requirements of a manufacturable design. However, the knowledge specific to design review (e.g.

the requirements of various manufacturing facilities) can be incorporated into a computer pro-

gram. Employing this knowledge, the program can direct the agent to enter the necessary design
54

Chapter 3 : Analytical model of agent setup time
information and notify him/her of the issues that might negatively impact the product’s manufac-

turing.

With respect to the above discussion, and assuming that the time a person needs to learn a new

skill is equal to the time which is required to extend the computer program to incorporate that

skill, we can deduce:

PTj
Agi Agj= PTj

AgComp PTj
Agi Agj≠< < (EQ 29)

Equation 29 states that:

• the agent setup time when one agent with the help of a computer program performs Aci and

Acj is more than its value when one agent performs them.

• However, the agent setup time when one agent with the help of a computer program performs

Aci and Acj is less than its value when two different agents perform them.

3.3.3 Assign a team to perform activities Aci and Acj

Let team Agi Agj,() denote the strategy stating that a team performs Aci and Acj, Agi Agj≠ denote

the strategy stating that two different agents who are not team members perform them and

Agi Agj= represent the strategy stating that the same agent performs both activities.

In general, Agi and Agj might have divergent goals. This divergence might discourage Agi to pro-

duce the complete and relevant information within the transaction, even if Agi knows what infor-

mation is considered relevant and complete, from Agj’s view.

Now, let’s assume that Agi and Agj are team members; i.e. they have mutual goals. Under the

assumption that team members are rationale, it is more likely that Agi tries to understand the effect

of his/her transaction on the Agj’s activity and produce the information to satisfy Agj’s require-

ments. Therefore establishing a team relationship between Agi and Agj leads to providing less
55

Chapter 3 : Analytical model of agent setup time
unnecessary and incomplete information by Agi. Using the above symbols and the notation from

section 3.2, we will have:

PTj
Agi Agj= Unnecessary Tij()() PTj

team Agi Agj,() Unnecessary Tij()() PTj
Agi Agj≠ Unnecessary Tij()()< <

PTj
Agi Agj= Missing Tij()() PTj

team Agi Agj,() Missing Tij()() PTj
Agi Agj≠ Missing Tij()()< <

(EQ 30)

(EQ 31)

For instance, when the manufacturing engineer and designer develop and share the mutual

goal(s), it is more likely that the designer tries to understand the producibility aspects of the prod-

uct in advance and comes out with the design that satisfies the requirements for the product’s

form, fit and function as well as the product’s manufacturability characteristics.

On the other hand, a team can gather a variety of skills. Arranging a team so that a member who

requires a new skill to perform the task can acquire it from the other member who already has that

skill, leads to less learning time. This will lead to:

PTj
team Agi Agj,() SKn Agj Ac, j()() PTj

Agi Agj≠ SKn Agj Ac, j()()< (EQ 32)

From the above discussion, we obtain:

PTj
Agi Agj= PTj

team Agi Agj,() PTj
Agi Agj≠< < (EQ 33)

Equation 33 states that:

• The value of agent setup time when the performing agents of Aci and Acj are team members is

more than its value when these agents are the same.

• However, the value of agent setup time when the performing agents of Aci and Acj are team

members is still less than its value when they are not team members.
56

Chapter 3 : Analytical model of agent setup time
3.3.3.1 Assign one agent to perform activities Acj-1 and Acj-2

Consider a situation where two different activities (Acj-1 and Acj-2) are caused by the same trans-

action, as shown below.

{Aci, Agj} --- Tij-1 ---> {Acj-1, Agj-1}

{Aci, Agi} --- Tij-2 ---> {Acj-2, Agj-2}

Tij-1 = Tij-2

Since the activities Acj-1 and Acj-2 are different, their sets of necessary information, missing infor-

mation and so on, which are produced by Aci and lead to their agent setup time, are not necessar-

ily identical. However, due to the fact that Agj-1 and Agj-2 (the agents of the activities) need to

know the information in the same transaction, these sets are definitely overlapping.

At first consider the case where Agj-1 and Agj-2 are different. The total agents’ setup time for Acj-1

and Acj-2 is the sum of Agj-1 setup time and Agj-2 setup time.

Now consider the case that one agent is assigned to perform both Acj-1 and Acj-2. Once this agent

is prepared to perform Acj-1, s/he is also partly prepared to perform Acj-2 and therefore the total

agent setup time for Acj-1 and Acj-2 will decrease.

Hence, if TPT represents the total agents setup time for activities Acj-1 and Acj-2, if

TPTAgj 1– Agj 2–≠ denotes TPT when the agents Agj-1 and Agj-2 are different, and if TPTAgj 1– Agj 2–=

denotes TPT when Agj-1 and Agj-2 are identical, we have:

TPTAgj 1– Agj 2–= TPTAgj 1– Agj 2–≠< (EQ 34)

Equation 34 states that total agents’ setup time when one agent performs Acj-1 and Acj-2 (two

activities which use the information contained in the same transaction) is less than its value when

different agents perform them.
57

Chapter 3 : Analytical model of agent setup time
For instance, each of the product supplier and the product customer separately designs a quality

test to inspect the product’s functionality. Let’s assume the transaction that causes both activities

is the product specification (i.e. prior to each of these test designs, the performing agent needs to

know the information in product specification). The total value of agent setup time when one

agent designs the supplier’s test and the customer’s test is considerably less than its value when

two different agents perform these activities.

3.3.3.2 Agent/activity design strategies and the issue of assigned agent

Given the agent setup time model (EQ 4), agent/activity design strategies (sections 3.3.1, 3.3.2,

3.3.3, and 3.3.3.1) and a set of candidate agents such as CAgi (i.e. the agent who currently per-

forms Aci), CAgj (i.e. the agent who currently performs Acj), and John Smith (i.e. an arbitrary

agent),

Who is more appropriate to be assigned to perform both Aci and Acj?

The agent/activity design strategies do not answer this question; i.e. they are incapable of priori-

tizing one agent ahead of the other. Authors tried to provide rules of thumb to answer this ques-

tion. For instance, consider the following heuristics:

• “Subsume information-processing work into the real work that produces the information”

[Hammer 91] which implies to assign CAgi to perform Aci and Acj.

• “Have those who use the output of the process perform the process” [Hammer 91] and “Cus-

tomer participation” [Davenport 93] which state to assign the process customer to perform Aci

and Acj.

• “Perform the work where it makes the most sense” [Hammer et al. 93] which suggests to

assign Aci and Acj to CAgi or the process customer, whoever is more appropriate.

However, as can be seen above, their attempts to provide an answer that always works were

unsuccessful because there is no unique answer to the above question. It really all depends on the

existing constraints in a scenario. Examples of constraints are: the agents’ capability, resource
58

Chapter 3 : Analytical model of agent setup time
availability, agents’ availability and policies. These constraints which differ from one scenario to

another lead to various answers. See the following examples.

• Aci is providing the requirements that a new product should satisfy. Acj is processing the

requirements; i.e. finding the product suppliers, choosing among them and issuing the order to

purchase the product from the selected supplier.

The non-relaxable constraint is: “the only agent who is capable of providing the product’s

requirements (i.e. perform Aci) is the one who will actually use that product.

Based on the constraint, we can infer that the performing agent for both of these activities is the

user of the product. Such a scenario might have been a driver for the heuristic “Subsume infor-

mation-processing work into the real work that produces the information”. As we will see in

the next example, a different scenario might lead to a different suggestion.

• Consider the two activities of issuing an order according to the current inventory level, Aci,

and manufacturing the goods to fill that order, Acj. Assume that there is a constraint stating

that due to financial constraints and available manufacturing capabilities, the agent CAgi who

currently issues the order can not produce the product.

This constraint implies that CAgi can not be assigned to perform both activities. We should look

for a candidate who is capable of issuing and manufacturing the order. If CAgj (the agent who

currently manufactures the order) has the required skills and resources to issue the order, then

CAgj can be a considered as a potential answer1 to the question2.

• One of our previous examples consists of two activities: design and reviewing the design from

manufacturability perspectives. The strategy we want to apply is that one agent with help of

computer performs both of the activities. The computer program mostly incorporates the

required skills to perform the review (as opposed the skills to perform the design). The agent

1. It is a potential answer, i.e. it might be rejected due to the other constraints such as “from a controlling point of view, the one
who issues the order and the one who manufactures the goods to fill that order can not be the same”.
2. An example is Wal-Mart and its supplier Procter & Gamble where Procter & Gamble checks the Wal-Mart’s inventory level for
its products, uses this data to schedule the manufacturing of those products, and even issues the order [Davenport 93].
59

Chapter 3 : Analytical model of agent setup time
and computer program together should be capable to perform both of the activities. This

entails that the assigned agent should definitely have the design expertise.

3.4 Conclusion and summary

Through the agent setup time model, we pointed out the important components of agent setup

time. We discussed different strategies that can reduce or remove some of these components. As

we saw in the previous chapter, several authors presented these strategies in the form of various

heuristics. However, none of them describe the conditions under which the strategies are applica-

ble. Although [Davenport 93] mentioned that the agent/activity design strategies seemed to be

more effective for service than manufacturing industry, he did not discuss the rationale. Many of

[Hammer et al. 93] heuristics1 are based on these strategies but muddled within the context of sce-

narios.

 Table 1 on page 61 summarizes our discussion. The strategies are listed in the first column. The

agent setup time and its components are presented in the first row, based on the same notations we

employed in the model. The definition of each notation is given in the table footnote. Each cell

presents the effect of a strategy on the agent setup time or one of its components; the strategy can

either “eliminate”, “reduce” the agent setup time (or one of its components) or has “no effect” on

it. In the next chapter, we develop a First Order Logic model of agent/activity design strategies.

1. The heuristics such as “Several jobs are combined into one”, “Work is performed where it makes the most sense”, and “Workers
make decisions”.
60

Chapter 3 : Analytical model of agent setup time
TABLE 1. Strategies and their effects on agent setup time

Strategy PTj(Tij) a PTj(Necessary(Tij)b PTj(Unnecessary(Tij))c PTj(Missing(Tij))d PTj(SKn(Agj,Acj))e

Within a batch

order

eliminate eliminate eliminate eliminate eliminate

Transfer line eliminate eliminate eliminate eliminate eliminate

Common compo-

nents

reduce reduce reduce reduce reduce

Standard interfaces reduce reduce reduce reduce reduce

Computer con-

trolled equipment

reduce reduce reduce reduce reduce

Assign one agent

to perform Aci and

Ac

f. Acj is the activity which uses the information contained in the transaction, caused by the activity Aci.

j
f

reduce eliminate eliminate eliminate no effect

Assign an agent

with the help of a

computer program

to perform Aci and

Acj
f

reduce reduce reduce reduce no effect

Assign a team to

perform activities

Aci and Acj f

reduce no effect reduce reduce reduce

Assign an agent to

perform Acj-1 and

Ac

g. Acj-1 and Acj-2 are two activities that use the information contained in the same transaction.

j-2
g

reduce reduce reduce reduce reduce

a. Agent setup time

b. The required time to understand necessary information.

c. The required time to separate unnecessary information.

d. The required time to gather missing information.

e. The required time to learn a new skill.
61

Chapter 4

Formal model of agent/activity design strategies

In this chapter, we develop a First Order Logic (FOL) model of agent/activity design strategies. It

is important to note that this FOL model of agent/activity design strategies and the analytical

model of the agent setup time (presented in the previous chapter) serve different purposes.
We used the latter to convey the effect of the agent/activity design strategies on agent setup time.

Through this process, although we described the strategies, we did not formally represent them.

The First Order Logic (FOL) model allows us to formally express these strategies through a set of

axioms. The axioms are important for two reasons. First, they provide a precise definition of the

strategies. Second, they can be viewed as a set of constraints. With regard to this view, a reasoning

system can use the axioms to generate alternative process designs that solve the following prob-

lem:

Given a process, what is the redesigned process which satisfies the “agent/activity design strate-

gies”, leading to minimal agent setup time?

In chapter 6, we employ the Prolog’s reasoning system1 to demonstrate how this can be done and

in which ways it can support the process design. On account of the important attributes of the axi-

1. For more information about Prolog, see appendix B (section B.1).
63

Chapter 4 : Formal model of agent/activity design strategies
oms, the logical approach enables us to accomplish the final goal of the thesis; i.e. to develop a

formal, precise and operational model of process design expertise.

In the following sections, at first, we specify the methodology that we employ to develop our log-

ical model, and we introduce the TOVE project which has provided a set of representations for

enterprise generic knowledge (e.g. activity and agent). Then, based on the methodology and

TOVE representations, we construct our First Order Logic (FOL) model.

4.1 Formalization methodology

The identification and formalization of generic knowledge has come to be called “Ontological

Engineering” [Fox 94].

An ontology is a formal description of entities, properties of entities, and relationships among

entities; it forms a shared terminology for the objects of interest in the domain, along with defini-

tions for the meaning of each of the terms [Fox 94]. Ontological Engineering promotes communi-

cation and provides an infrastructure to facilitate the sharing and reuse of knowledge across

various applications.

One of the important characteristics of Ontological Engineering is its emphasis on providing defi-

nitions. It is common that experts use different names to refer to the same concept. For instance

“transaction manager” and “case manager” might be different names for the same set of responsi-

bilities for an employee. On the other hand, experts might use the same word for distinct concepts.

For instance one might use “case manager” to refer to a person or a team who handles the order

from the beginning to the end [Davenport 93] and the other one to a person who is responsible to

answer customers’ queries [Hammer et al. 93]. By providing adequate definitions for each term, a

model plays a key role in providing consistent interpretations and uses of that term.
64

Chapter 4 : Formal model of agent/activity design strategies
In order to formalize the agent/activity design strategies, we employ a methodology [Gruninger

94] which is a guiding mechanism to design the ontologies and also provides a framework to eval-

uate the adequacy and competency of a proposed ontology with respect to the set of questions that

arise from applications.

The methodology comprises the following steps:

1. Motivating scenario

The development of a formal model is motivated by scenarios that arise in different applica-

tions. A motivating scenario introduces a problem(s) and its solutions. Documentation of moti-

vating scenarios is important because it provides a rationale for the competency questions

(discussed in the next step) and the answers to these questions.

2. Informal competency questions

The problem which a model of expertise tries to solve is stated as a query or informal question.

These questions, to which we refer as “competency questions”, provide a criteria to evaluate the

competency of the problem solving and reasoning capability of the model. As important, they

justify the existence and properties of the entities within the ontology.

The competency questions are “ideally defined in a stratified manner, with higher level ques-

tions requiring the solution of lower level questions” [Gruninger 94]. They also assist us to

make an initial evaluation whether the questions can be solved by existing ontologies or

whether an extension or a new ontology is required.

3. Terminology

The required terms to ask and answer the competency questions should be identified and repre-

sented in first order logic. The terms are specified by the objects with specific properties and

relationships. Objects are structured into taxonomies. Constants or variables represent objects,
65

Chapter 4 : Formal model of agent/activity design strategies
unary predicates represent properties and n-ary predicates represent relationships among

objects.

4. Axioms

Specification of terminology in first order logic is insufficient to construct a formal model. In

order to have a precise formalization, the terms must be defined. Axioms are first order logic

sentences that provide the definitions for and the constraints on the terms’ interpretations. The

axioms must be necessary and sufficient to express the competency question and its solutions.

5. Formal competency questions

The informal competency questions should also be defined in first order logic. They are

expressed as an entailment, or consistency problem with respect to the defined terminology and

axioms. They have one of the following formats where Tontology is the set of axioms in ontology,

and Q is a first order sentence using only predicates in Tontology.

Determine Tontology Q

Determine whether Tontology Q

; that is, determine if Q is consistent with Tontology.
66

Chapter 4 : Formal model of agent/activity design strategies
4.2 TOVE project

A goal of the TOVE project is to create a set of enterprise ontologies which have the ability to

deduce answers to queries that require relatively shallow knowledge of the domain [Fox et al 93].

Towards this goal, TOVE 1) provides a shared terminology for the enterprise that every applica-

tion can jointly understand and use, 2) defines the meaning of each term (semantics) in a precise

and as unambiguous manner as possible, 3) implements the semantics in a set of axioms that will

enable TOVE to automatically deduce the answer to many “common sense” questions about the

enterprise and 4) defines a symbology for depicting a term or the concept constructed thereof in a

graphical context [Fox 92].

TOVE ontology currently provides representations for activity, time, causality, resources, organi-

zation, quality and cost.

4.3 Constructing the logical model of agent/activity design
strategies

We develop the FOL model, following the steps of the methodology (as described in section 4.1),

and using the TOVE ontology.

4.3.1 Motivating scenario

• Given a process, how can we assign agents to this process to improve its agents’ setup time?

We want to solve the above problem. As we recall from the previous chapter, the agent/activity

design strategies (listed below) improve the agent setup time:

1. assigning one agent (with the help of computer) to perform the activity which produces the

information and the one which uses that information.
67

Chapter 4 : Formal model of agent/activity design strategies
2. assigning one team of agents to perform the activity which produces the information and the

one which uses that information.

3. assigning one agent to perform two activities which use the same information.

With respect to these strategies and their effects on agent setup time, we can substitute the above

problem with the following one:

• Given a process, how can we assign agents to this process to satisfy the agent/activity

design strategies?

The problem is solved when the agent assignment of the process satisfies the agent/activity design

strategies. This exactly means:

• for all the process subactivities, if a subactivity such as Aci produces the information, if a sub-

activity such as Acj uses this information, if agent Agi performs Aci, and if agent Agj performs

Acj, then:

1) Agi and Agj are the same (see Figure 2 on page 68), or

2) Agi and Agj are a team (see Figure 3 on page 69), or

3) Another subactivity such as Ack uses this information and Agk who performs Ack is the

same as Agj (see Figure 4 on page 69).

FIGURE 2. Agi and Agj are the same

AcjAci

Agi = Agj

.

68

Chapter 4 : Formal model of agent/activity design strategies
FIGURE 3. Agi and Agj are a team

Aci Acj

Agi and Agj are a team

.

FIGURE 4. Another subactivity such as Ack uses this information and Agk who
performs Ack is the same as Agj.

Aci Acj

Ack

Agk = Agj

4.3.2 Informal competency question

The first version of informal competency question is the problem presented in section 4.3.1:

• Given a process, how can we assign agents to this process to satisfy the agent/activity

design strategies?

We revise it to meet the following requirements:

• the competency question should be expressed, using FOL, as will be discussed in 4.3.2.1.

• the competency question should be tailored with respect to TOVE’s definition of activity, as

will be discussed in 4.3.2.2.
69

Chapter 4 : Formal model of agent/activity design strategies
• the concepts that are used by the competency question should have consistent definitions at

various levels of detail. This will be discussed in 4.3.2.3.

Basically, this section prepares the reader for the final representation of the competency question

and justifies the employed terms and their definitions.

4.3.2.1 Expressing the question, using FOL

• Given a process, how can we assign agents to this process to satisfy the agent/activity

design strategies?

In FOL, the above sentence can be expressed as:

• Given a process, does there exist any agent(s) who is assigned to this process such that the

agent/activity design strategies are satisfied?

In FOL, agent/activity design strategies are represented as a sentence. We adopt the following

convention to refer to two classes of sentences:

1. Any sentence which expresses how agents should be assigned to activities is an "agent

assignment constraint". In section 4.5, we will show the use of this class of sentence. Each

of the following sentences is an example of "agent assignment constraint":

There exists one activity which is performed by John Doe.

All the activities which require management skills are performed by the agents who have man-

agerial skills.

2. Obviously, our agent/activity design strategies are also a subclass of "agent assignment con-

straint", for they describe a specific way of assigning agents to activities. We label these strat-

egies as "agent/activity constraint" and with respect to this label, we modify the

competency question as:
70

Chapter 4 : Formal model of agent/activity design strategies
• Given a process, does there exist any agent(s) who is assigned to this process such that the

"agent/activity constraint" is satisfied?

4.3.2.2 Tailoring the question, with respect to TOVE’s definition of activity

• Given a process, does there exist any agent(s) who is assigned to this process such that the

"agent/activity constraint" is satisfied?

In TOVE’s ontology a process is represented as an (aggregate or complex) activity. Using

TOVE’s terminology, we ask:

• Given an activity, does there exist any agent(s) who is assigned to this activity such that the

"agent/activity constraint" is satisfied?

On the other hand, in TOVE an activity is defined by specifying its agents, subactivities and con-

straints over the occurrence of these subactivities. Based on this definition, given an activity, the

modifications such as eliminating one of its subactivities or assigning agents to its subactivities

will lead to an activity which is different from the given one. Therefore, in the competency ques-

tion, instead of looking for agents, we should search for new activities that satisfy the "agent/

activity constraint".

With respect to the above discussion, the competency question is refined into the following form:

• Given an activity, does there exist any “new activity” that satisfies the "agent/activity con-

straint"?

where the specifications of the “new activity” are:

• “new activity” is, of course, originated from the given activity,

• its agent assignment is different than the given activity,

• in some cases, the subactivities of “new activity” and the given one are identical and in

other cases they are not. We elaborate this issue in section 4.3.2.3.
71

Chapter 4 : Formal model of agent/activity design strategies
4.3.2.3 Consistent definitions at various levels of detail

• Given an activity, does there exist any “new activity” that satisfies the "agent/activity con-

straint"?

Suppose the given activity has the following subactivities:

1. preliminary design

2. sending and receiving the preliminary design

3. studying the preliminary design

4. detailed design

Assigning one agent to the first and the fourth subactivity eliminates the need for the existence of

the second and third subactivity in the “new activity”. In this case, the subactivities of “new activ-

ity” and the given one are not identical.

Under the following two conditions, the above activity can be presented in a way that it only con-

sists of the first and the fourth subactivity; i.e. preliminary design and detailed design. First, the

modeler does not see any necessity to go to the detailed level of abstraction to represent send,

receive and study activities. Second, since this is an activity which is not currently performed in

the enterprise, its agent assignment is not designed yet. In these cases, the “new activity” will

have the same subactivities as the given one.

The above discussion indicates that the relationship between the given activity and “new activity”

might vary from one level of detail to another. However, we want to define a relationship which is

independent of the model’s level of abstraction and is consistent across various scenarios. For

that, we introduce the concept of “base activity” and define the “new activity” with respect to this

concept.

In simple words, a “base activity” is defined as if one agent performs all of its subactivities. More

precisely, its definition is:
72

Chapter 4 : Formal model of agent/activity design strategies
Given an activity, the “base activity” has all the subactivities of the given one except the subac-

tivities which are from the class of agent set up activity. Examples of agent setup activities are

send, receive and study.

At this point, we are able to give a consistent definition for “new activity” and that is:

“New activity” has exactly the same subactivities as its “base activity”. The performing agents

of the new activity are specified.

Using the above concepts, we elaborate the competency question to its final form which is:

• Given a “base activity”, does there exist any “new activity” that satisfies the "agent/

activity constraint"?

where (as described in 4.3.1) the "agent/activity constraint" is:

• for all the “new activity” subactivities, if a subactivity such as Aci produces the information, if

a subactivity such as Acj uses this information, if agent Agi performs Aci, and if agent Agj per-

forms Acj, then:

1) Agi and Agj are the same, or

2) Agi and Agj are a team, or

3) Another subactivity such as Ack uses this information and Agk who performs Ack is the

same as Agj.
73

Chapter 4 : Formal model of agent/activity design strategies
4.3.3 Terminology

The terms employed by the competency question are listed in the first column of Table 2. The

FOL representation of each term and a short description of the FOL representation are listed in the

second and third columns of Table 2.

TABLE 2. Terminology for agent/activity design strategies

Term FOL representation Description
activity Do(a,s1,s2) An activity whose performing agent is not speci-

fied is represented by Do.

Do is a relationship among an activity (a), the situ-

ationa (s1) when it starts, and the situationa (s2)

when it ends.
activity and its performing

agent

Doα(a,s1,s2,ag) Doα represents an activity whose performing agent

is specified.

Doα is a relationship among an activity (a), the sit-

uationa (s1) when it starts, the situationa (s2) when

it ends, and its performing agent (ag).
subactivity subactivity(sub-a,a) subactivity specifies a relationship between an

activity (a), and its subactivity (sub-a).

sub-a and a are both activities.
agent setup activity agent-setup(a) agent-setup specifies a class of activity; e.g. send

and receive.

a is an activity.
base activity base-activity(a) base-activity specifies a class of activity.

a is an activity.
new activity new-activity(na, a) new-activity is a relationship between a base activ-

ity (a) and the new activity (na) which is generated

from the base activity (a).

a and na are activities.
74

Chapter 4 : Formal model of agent/activity design strategies
agent/activity constraint AAC(a,ag) AAC is a relationship which represents the agent/

activity constraint.

a is an activity.

ag is an agent.
produces information produces-information(a,inf,ag) produces-information is a relationship among an

activity (a), its performing agent (ag) and the

information (inf) produced by the activity (a).
uses information uses-information(a,inf,ag) uses-information is a relationship among an activ-

ity (a), its performing agent (ag) and the informa-

tion (inf) used by the activity (a).
team team(ag1, ag2,g) team is a relationship between two agents (ag1 and

ag2) and their common goal, g.

a. Given that time is represented as a continuous line, a situation corresponds to a point on this line. For more information about
situations, see [Gruninger et al. 94].

TABLE 2. Terminology for agent/activity design strategies

Term FOL representation Description
75

Chapter 4 : Formal model of agent/activity design strategies
4.3.4 Axioms

In this section, the definition of each term is specified, in English and in FOL. The superscript on

each term, in the form of “Tsi”, indicates that the definition of term “T” is found in step number

“si” of this section.

1. What is the “base activity”?

base-activity(bs-a) specifies that activity bs-a is a base activity. If an activity such as bs-a is a

base activity then its subactivities are not from the class of agent setup. The performing agent(s)

of the base activity, bs-a, is (are) not specified. See (EQ 35).

(∀ bs-a) base-activity(bs-a) ⊃ (∀s1,s2) (¬∃ sub-a) Do(bs-a,s1,s2)s9 ∧ subactivity(sub-a, bs-

a) ∧ agent-setup -activitys3(sub-a). (EQ 35)

2. What is the “new activity”?

new-activity(new-a, bs-a) is a relationship between two activities (new-a and bs-a) where bs-a

is a base activity and new-a is a new activity which is generated from the base activity (bs-a).

This relationship is specified as follows:

All the subactivities of the base activity (bs-a) are included in the new activity (new-a) and

all the subactivities of the new activity (new-a) are included in its base activity (bs-a). See

(EQ 36).

The performing agents of the base activity (bs-a) are not specified, but the performing

agents of new activity (new-a) are specified. See (EQ 36).

(∀bs-a, new-a) new-activity(new-a, bs-a) ≡ (∀s1,s2,s3,s4, sub-a,sub-aa) base-activity(bs-a)

∧ (subactivity(sub-a, bs-a) ⊃ subactivity(sub-a, new-a)) ∧ (subactivity(sub-aa, new-a) ⊃

subactivity(sub-aa, bs-a)) ∧ (∃ag) Doα(new-a,s3,s4,ag)s9 (EQ 36)
76

Chapter 4 : Formal model of agent/activity design strategies
3. What is the “agent setup activity”?

“Agent setup activity” is a class of activity. Prior to performing an activity (act), an agent (ag)

should know some information (inf). In order to obtain that information (inf) the agent (ag)

might need to perform an activity (set-a). And, set-a might include activities such as send,

receive and/or study. We classify (set-a) as an agent setup activity and define it as:

set-a is an agent setup activity, iff:

inf is the knowledge precondition for an activity act (i.e. ag, the performing agent of act,

can not initiate act until ag knows inf), and

ag will know inf, if the agent setup activity (set-a) is performed (i.e. if inf is not known and

set-a is performed then the agent ag will obtain inf).

One of the terms that we used in the above definition is “agent knows”. The FOL representation

of this term is Ks(ag,inf,s) where ag is an agent, inf is the information known by this agent in

situation s. For more information about Ks, see step 7 on page 80.

Equations 37, 38 and 39, together, represent the definition for the agent setup activity (set-a).

(∀set-a) agent-setup-activity(set-a) ≡ (∀act, inf) knowledge-precondition(act,inf) ∧

achieve(set-a,act,inf). (EQ 37)

(∀act,inf) knowledge-precondition(act,inf) ≡ (∀ s1, s2,ag) Doα(act,s1,s2,ag)s9 ⊃

Ks(ag,inf,s1)s7 (EQ 38)

(∀ set-a,act,inf) achieve(set-a,act,inf) ≡ (∀s3,s4,ag) ¬Ks(ag,inf,s3)s7 ∧ Do(set-a,s3,s4)s9 ⊃

Ks(ag,inf,s4)s7. (EQ 39)

4. What is “AAC”?

AAC(a, ag) is a relationship between an activity and its performing agents. It represents the

"agent/activity constraint" and is defined as:
77

Chapter 4 : Formal model of agent/activity design strategies
Given that a is an activity, for all subactivities of a:

if a2 is a subactivity which uses the information, inf, and the performing agent of a2 is ag2,

if a1 is a subactivity which produces the information, inf, and the performing agent of a1 is

ag1,

then:

AAC1(ag1,ag2) is true; meaning that ag1 and ag2 are the same, or

AAC2(ag1,ag2) is true; meaning that ag1 and ag2 are a team, or

AAC3(a,a2, ag2,a3,ag3,inf) is true; meaning that there is another subactivity such as a3

(which is different than a2), a3 uses the information, inf, and ag3 who is the performing

agent of a3 is the same as ag2.

(EQ 40), (EQ 41), (EQ 42), and (EQ 43) represent the above definition.

(∀a,ag) AAC(a,ag) ≡ (∀a1,a2,ag1,ag2,inf,s1,s2,s11,s12,s21,s22,s31,s32) Doα(a,s1,s2,ag) ∧

subactivity(a1, a) ∧ subactivity(a2,a) ∧ Doα(a1,s11,s12,ag1) ∧ Doα(a2,s21,s22,ag2) ∧ uses-

informations5(a2,inf,ag2) ∧ produces-informations6(a1,inf,ag1) ⊃ AAC1(ag1,ag2) ∨

AAC2(ag1,ag2) ∨ ∃a3,ag3AAC3(a,a2,ag2,a3,ag3,inf). (EQ 40)

(∀ag1,ag2) AAC1(ag1,ag2) ≡ (ag1= ag2). (EQ 41)

(∀ag1,ag2) AAC2(ag1,ag2) ≡ team(ag1, ag2,g). (EQ 42)

(∀a,a2, ag2,inf,a3,ag3) AAC3(a,a2, ag2,a3,ag3,inf) ≡ subactivity(a3,a) ∧¬(a3 = a2) ∧

(∀s31,s32) Doα(a3,s31,s32,ag3) ⊃ uses-informations5(a3,inf,ag3) ∧ (ag2= ag3). (EQ 43)

• Assumption
78

Chapter 4 : Formal model of agent/activity design strategies
The above definition is based on the following assumption that specifies the relationship

between the performing agent of an activity and the performing agent(s) of its subactivities.

If a is an activity, if ag is the performing agent of a, if a1 is a subactivity of a, and if ag1 is the

performing agent of the subactivity a1, then ag and ag1 are the same or ag is a group agent and

one of its members is ag1.

(∀a,ag,ag1,a1,s1,s2,s3,s4) Doα(a,s1,s2,ag) ∧ subactivity(a1,a) ∧ Doα(a1,s3,s4,ag1) ⊃ (ag1

=ag) ∨ (member(ag1,ag)). (EQ 44)

5. What is the definition of “uses-information”?

uses-information(a,inf,ag) is a relationship among an activity (a), an agent (ag) and informa-

tion (inf), as follows:

Activity a uses information inf iff a can not be initiated until its performing agent ag has the

information inf.

(∀a,inf,ag) uses-information(a,inf,ag) ≡ (∀ s1,s2) Doα(a,s1,s2,ag)s9 ⊃ Ks(ag,inf,s1)s7 (EQ 45)

An example of an activity which uses information is “preliminary design” which uses the infor-

mation “product specification”.

6. What is the definition of “produces information”?

produces-information(a,inf,ag) is a relationship among an activity (a), an agent (ag), and infor-

mation (inf), as follows:

Activity a produces information inf iff before the start of a, its performing agent, ag, does not

know inf and at the end of a the agent, ag, knows it.

(∀a, inf,ag) produces-information(a, inf,ag) ≡ (∀s1, s2) ¬Ks(ag,inf,s1)s7 ∧ Doα(a,s1,s2,ag)s9

⊃ Kss7(ag,inf,s2). (EQ 46)
79

Chapter 4 : Formal model of agent/activity design strategies
An example of an activity which produces information is “providing product requirements”

which produces “product requirement”.

7. What is “Ks”?

Ks(ag,inf,s) is a relationship among an agent (ag), information1 (inf), and a situation (s).

Ks(ag,inf,s) specifies that agent ag knows information inf in situation s.

An example is: after reading the database, John knows Joe’s credit status.

Following is the FOL representation of this sentence:

Ks(John,credit-status(Joe), s1) ∧ (s1 = do(read(dbase), s)).

where dbase represents the data base and do(read(dbase), s) represents the situation (s1) when

activity “reading the data base” is terminated.

8. What is a “team”?

There are many different types of teams. In this work, the term “team” refers to a group of

agents who has a common goal.

There exists a team relationship between two agents if the agents have an identical goal. See

(EQ 47).

 (∀ag1, ag2,g) team(ag1,ag2,g) ≡ (∀s) holds(agent-constraint(ag1, goal(g,ag1)),s) ∧

holds(agent-constraint(ag2, goal(g,ag2)),s). (EQ 47)

where holds(agent-constraint(ag1, goal(g,ag1)),s) is the representation of an agent’s goal in

TOVE and in this representation, ag1 is an agent, g is a goal2, and s is the situation3 when the

agent has that goal.

1. Information is represented as a fluent where a fluent is a predicate or function whose value may change with time.
2. Goal is a fluent; i.e. a predicate or function whose value changes over time.
3. For more information about situations, see [Gruninger et al. 94].
80

Chapter 4 : Formal model of agent/activity design strategies
9. What is the definition of “Do” and “Doα”?

In TOVE, an activity is represented by one of the following predicates:

• Do(a,s1,s2) in which a is an activity, a is initiated in situation s1 and terminated in situa-

tion s2.

The representation Do is used when the performing agent of the activity is not specified.

• Doα(a,s1,s2,ag) in which a is an activity, a is initiated in situation s1, terminated in situa-

tion s2, and ag is the agent who performs a.

The representation Doα is used when the performing agent of the activity is specified.

Situations are defined as distinguished intervals on the time line. A more complete specification

of situations can be found in [Gruninger et al. 94].

4.3.5 Formal competency question

Using the above terms and axioms, we present the formal competency question as1:

Given a base activitys1, A, does there exist a new activitys2, new-a that satisfies the "agent/activ-

ity constraint"s4, AAC?

Theories |= (∃ new-a,ag) base-activity(A) ∧ new-activity(new-a, A) ∧ AAC(new-a,ag). (EQ 48)

where Theories are TOVE theories and the axioms which defined the objects and predicates

used by our competency question. These axioms were presented in section 4.3.4.

4.4 Extending the model

[Fox 93] proposed a set of criteria based on which enterprise ontologies can be evaluated. One of

these criteria is extensibility; i.e. can the new concepts be easily added to the representation? In

1. Note the superscript on each term, indicates that the term is defined in step number “si” of section 4.3.4.
81

Chapter 4 : Formal model of agent/activity design strategies
this section, we demonstrate how our model can be extended to encompass a new class of con-

straint.

• From section 4.3.5, we know the problem that our FOL model solves is: Given a base activity,

A, does there exist a new activity, new-a that satisfies the "agent/activity constraint", AAC?

The solutions to this problem are alternative new activities which satisfy the "agent/activity con-

straint". The alternatives are generated without respect to any other constraint, such as “agents

capability”, “agents availability” and so on.

Suppose we want to augment the model so that its proposed alternatives also satisfy the “agents’

capability constraint”. This means, if the model assigns an agent to any subactivity of the new

activity, then that agent should have the skills required to perform that subactivity. We add this

capability to the model, through the following steps:

1. We identify the problem that our extended model should solve as:

Given a base activity, A, does there exist a new activity, new-a, which satisfies the "agent/activ-

ity constraint", AAC, and satisfies the “agents’ capability constraint”?

2. We identify the required terms to state the competency question.

The new terms we need are: “agents’ capability constraint”, “the skills which are required to

perform an activity” and “the agent’s skills”.

ACPC(a,ag) is a relationship which represents the “agents’ capability constraint”, in which a is

an activity and ag is an agent.

required-skill(a,f) is a TOVE predicate which specifies that skill f1 is required to perform activ-

ity a.

1. Skill, f, is a fluent; i.e. a predicate or function whose value changes over time.
82

Chapter 4 : Formal model of agent/activity design strategies
 has-skill(ag,f) is a TOVE predicate which specifies that agent ag has the skill f1.

3. Using the above terms and also employing the terms Doα and subactivity (see Table 2 on

page 74), we define the “agents’ capability constraint”, as:

Given that a is an activity, for all of its subactivities such as a1, if the required skill to perform

a1 is f1, and if the performing agent of a1 is ag1, then ag1 should have the skill f1.

(∀a,ag) ACPC(a,ag) ≡ (∀a1,ag1,f1,s1,s2,s11,s12) (Doα(a,s1,s2,ag) ∧ subactivity(a1, a) ∧

Doα(a1,s11,s12,ag1) ∧ required-skill(a1,f1)) ⊃ has-skill(ag1,f1). (EQ 49)

4. And finally, the formal competency question of the extended model will be:

Theories |= (∃ new-a,ag) base-activity(A) ∧ new-activity(new-a, A) ∧ ACC(new-a,ag) ∧

ACPC(new-a,ag). (EQ 50)

The above competency question (stating that given a base activity, A, does there exist a new activ-

ity, new-a, which satisfies the "agent/activity constraint", AAC, and satisfies the “agents’ capabil-

ity constraint”, ACPC?) indicates the problem solving and reasoning capability of our extended

model.

4.5 Generalization of the competency question

The "agent/activity constraint" and “agents’ capability constraint” are sentences with a common-

ality and that is, they express how agents should be assigned to activities. Another example of

such a sentence is:

• Jane Doe is the only agent who should perform the activity of evaluating the transcripts.

(∀s1,s2,ag,t) (Doα(evaluate(t),s1,s2,ag) ∧ transcript(t)) ⊃ ag = Jane-Doe. (EQ 51)
83

Chapter 4 : Formal model of agent/activity design strategies
As mentioned in section 4.3.2.1, we classify these sentences as "agent assignment constraint". We

can generalize our competency question with respect to this class as:

Given a base activity, A, does there exist a new activity, new-a, which satisfies a given "agent

assignment constraint"?

Theories |= (∃ new-a,ag) base-activity(A) ∧ new-activity(new-a, A) ∧ ϕ(new-a,ag). (EQ 52)

where "agent assignment constraint" is any sentence in the form of ϕ(new-a,ag) which

expresses how agent ag is assigned to activity new-a.

The previous competency questions (presented in 4.3.5 and 4.4) are subclasses of this general

class.
84

Chapter 4 : Formal model of agent/activity design strategies
4.6 Summary
In this chapter, we created a FOL model of agent/activity design strategies which can solve the

following problem:

Given a base activity, A, does there exist a new activity, new-a which satisfies the "agent/activ-

ity constraint", AAC?

The solutions to the above problem are alternative new activities which satisfy the "agent/activity

constraint".

We showed how to extend the reasoning capability of the logical model of agent/activity design

strategies so that its proposed alternatives also satisfy the “agents’ capability constraint”. This

means, if the model assigns an agent to any subactivity of the new activity, then that agent should

have the skills required to perform that subactivity.

We also introduced a general class of problem to which the competency question that our model

solves belongs.

Since the model of agent/activity design strategies is in FOL, it can be implemented in a logic pro-

gramming language such as Prolog. In chapter 6, we discuss the implementation of the model.
85

Chapter 4 : Formal model of agent/activity design strategies
86

Chapter 5

Design validation model
In this chapter, we develop a First Order Logic model of three categories of BPR expertise. They

are:

• Dangling information

• Case management

• Changeable agent assignments

The logical model can be employed to validate an existing process design. For this reason, we

refer to it as design validation model. Specifically, the design validation model is capable of mak-

ing process designers aware of missing elements in the process structure.

• The focus of “dangling information” is on information flow. It finds situations where an activ-

ity which should use a specific piece of information is missing.

• With respect to the “case management” expertise, the model identifies the situations where an

agent with a certain role does not exist, a piece of information which is required by this agent

and/or by the process customer are left out from the process definition.
87

Chapter 5 : Design validation model
• In regard to the “changeable agent assignments” expertise, the model finds an agent assign-

ment for which a cancellation is not defined.

A missing element is not necessarily a sign of a problem. A problem develops when the omission

is due to a design oversight rather than a design decision. A process designer can use the design

validation model to identify these missing parts. With respect to each omission the designer has

two choices, either altering the process design to eliminate the omission or to accept the design as

it is. In chapter 6, through an example, we demonstrate the application of the design validation

model.

As before, we build the above models upon the TOVE ontologies. For “dangling information”,

there is no need for new ontologies; it uses the TOVE ontologies, already presented for agent/

activity design strategies.

However, for “case management”, we need to introduce the TOVE representation of what is the

truth value of a property at different time points and how this value changes, as well as the TOVE

representation of agent constraints. These representational constructs will also be employed by the

“changeable agent assignments”.

In order to create the design validation model, we follow the methodology [Gruninger 94] (which

was described in the previous chapter). However, we will be less rigorous than we were in devel-

oping the logical model of agent/activity design strategies.

5.1 Dangling information

5.1.1 Motivating scenario and informal competency question

Often, the information produced by an activity is needed to enable another activity such as report-

ing, monitoring and/or decision making. The activity which produces the information and the one
88

Chapter 5 : Design validation model
which uses it can be the subactivities of one process, as well a the subactivities of two separate

processes. Unless the use of information is not included as a part of the processes, the relationship

between the information produced and the decisions or actions taken can never be understood or

improved.

The term “dangling information” refers to the information which is produced by an activity but

not used by any other activity. The existence of “dangling information” might be an indicator of

incompleteness of the process definition.

Answering the following competency question, the “dangling information” expertise identifies

the situations where the contribution of the obtained information to the continuation of process(es)

is not recognized.

• Given a set of activities, does there exist a dangling piece of information?

which precisely means:

• Given a set of activities, does there exist a piece of information that is produced by an

activity and not used by any other activity?

5.1.2 Terminology and axioms

In the previous chapter, the required terms to ask and answer the above competency question were

introduced. Table 3 reiterates these terms and their FOL representation to refresh the reader’s

memory. The axioms which define these terms were presented in chapter 4, section 4.3.4, steps 5

and 6 on page 76.
89

Chapter 5 : Design validation model
TABLE 3.

Term FOL representation Description
produces information produces-informa-

tion(a,inf,ag)

produces-information is a relationship among an

activity (a), its performing agent (ag) and the infor-

mation (inf) produced by the activity (a).
uses information uses-information(a,inf,ag) uses-information is a relationship among an activity

(a), its performing agent (ag) and the information

(inf) used by the activity (a).

Terminology for the “dangling information”

5.1.3 Formal competency question

Using the above terms, we present the formal competency question as:

Theories |= (∃ a1,inf,ag1) produces-information(a1, inf,ag1) ∧ ¬ (∃ a2,ag2) uses-

information(a2,inf,ag2). (EQ 53)

stating that:

• Given a set of activities, does there exist a piece of information that is produced by an activity

and not used by any other activity?

5.2 Case management

5.2.1 Motivating scenario

It is important that for each transaction moving through a process, one agent is assigned to man-

age it. For example, if the process focuses on customer service, the agent should be known by the

customer of the process. In order to answer the customer’s queries about the transaction status, s/

he should be able to trace the transaction. We call this agent the “case manager”. The existence of
90

Chapter 5 : Design validation model
such an agent is an indicator that the customer’s demand can be captured through all steps of the

process.

The idea was discussed in the reviewed heuristics, e.g. “A Case Manager provides a single point

of contact”, [Hammer et al. 93].

Basically, “case manager” is an organizational role which is defined in terms of the authorities and

responsibilities of the agent who fills this role. The requirements of enterprises/processes vary and

so do their definitions for the “case manager” role. For instance, some case managers might have

full access to pricing and credit policies, be empowered to assign agents to perform the subactivi-

ties of the process and/or even change the schedule of those subactivities.

In this thesis, we assume that the minimum responsibility of the agent who fills this role is to

answer the customer’s queries; in particular the queries about the transaction status. We consider a

case that a process is given, it has a customer, and there is a “case manager” role associated with

this process. In this case, any of the following situations might be an indication of the flaw in the

effectiveness of the “case manager” role.

1. John who was the “case manger” of this process, resigned, and a new case manager is not

assigned yet. This means Jill, the customer, has lost her contact point and consequently she

might experience some delay, when asking a query to which an answer is required.

2. Consider in the above scenario, Joe is assigned as the new case manager but Jill the customer

has not been informed yet. From the customer’s point of view, having an unknown case man-

ager is as useless as not having a case manager at all; in both cases, Jill can not smoothly trans-

fer her needs to the enterprise.

3. Jill finally understood Joe is the current “case manager” for her transaction. She calls him to

know the current status of her transaction. Currently Jack is processing Jill’s transaction but

Joe, the case manager, has not been informed yet. If he was informed as soon as Jack was

assigned, he could answer Jill much faster.
91

Chapter 5 : Design validation model
Given a process, our objective is to look for the situations- similar to the above scenarios- where

the role of case manger might lose its effectiveness. To achieve this objective, we are interested to

know:

1. Is there a time when no agent fills the “case manager” role?

2. Is there a time when an agent fills the “case manager” role but this agent is not known by the

customer?

3. Is there is a time when an agent should perform a subactivity of the process and the “case

manager” of this process does not know it?

5.2.2 Informal competency questions

Above, we presented the first version of our competency questions. In this section, we discuss the

representational requirements to ask and answer them, introduce TOVE’s ontologies that fulfil

these requirements, and finally use the discussion to restate our competency questions. This sec-

tion justifies our terminology and formal competency questions which will be presented later.

5.2.2.1 Temporal projection
In the above questions, we validate the effectiveness of the case manager’s role by examining the

truth value of a property of a given process at various time points. For instance, we check to see

whether there is a time when no agent fills the “case manager” role. This entails that we should be

able to represent what is the truth value of a property at different time points and, as important,

represent how this value changes; e.g. an agent who filled this role before, does not fill it any

more.

What changes the truth value of a property is the occurrence of actions, for instance, as the result

of the assignment, an agent would fill the “case manager” role. Evaluation of the truth value of a

proposition at some point in time- on the basis of a set of actions that occur at different points- is

also called “Temporal Projection” [Gruninger et al. 95b].
92

Chapter 5 : Design validation model
TOVE adopted the situation calculus to provide the ontologies for Temporal Projection. Here, we

only use what TOVE has provided, without going through the details. However, more information

about situation calculus can be found in [Gruninger et al. 94]. We make use of the following

TOVE predicates to represent what is the truth value of a property at different time points, and

how the occurrence of an action changes or does not change this value:

• holds(f, s) is used to represent that a property (f) of the world is true in situation s.

There is an initial situation, and the world changes from one situation to another when actions

are performed [Gruninger et al. 95b].

• holdsT(f, t), representing that a property (f) of the world is true at time t.

Given that time is represented as a continuous line, a situation corresponds to a point on this

line.

• holds(f, do(a,s)) is used to represent what holds or does not hold in the world after performing

some action (a) in situation s.

• occursT(a, t), represents the occurrence of an action a at a time point t.

5.2.2.2 Agent constraints
Recall the problems presented in the motivating scenario. In those problems, we specifically need

to represent the following terms: organizational role, “an agent who should perform a subactiv-

ity”, and a customer. Basically, TOVE groups these terms under the category of “agent con-

straints”. Since all agent constraints (e.g. an organizational role) may change between situations,

TOVE represents them, using holds/2 (as presented in the previous section).

Following, we describe TOVE’s ontologies for the above terms. We also present TOVE’s general

approach that allows us to define different agent constraints and tailor them, according to the

requirements of various organizations.

1. Organizational role
93

Chapter 5 : Design validation model
In TOVE, any organizational role is viewed as an agent constraint; a role is a group of con-

straints that any agent filling that role should satisfy. TOVE represents an organizational role, as

follows:

holds(agent-constraint(ag, role(ag,r)),s), specifying in situation s, agent ag has the constraint to

fill role r.

2. An agent should perform a subactivity

This is also another type of agent constraint which again is represented by holds/2 (presented in

the previous section), as follows:

holds(agent-constraint(ag, process-obligation(ag,ac),s)), specifying in situation s, agent ag has

the constraint to perform activity ac.

3. Customer

Similarly, TOVE’s customer is represented as:

holds(agent-constraint(ag,process-customer(c,a)),s), specifying that in situation s, agent c is

the customer of activity a.

4. Agent constraint

TOVE provides the following form to allow enterprise modelers to represent and define any

type of agent constraint.

(∀ag,x,s) holds(agent-constraint(ag,c(x)),s) ≡ φ(ag,s)

Intuitively, agent-constraint(ag,c(x)) specifies agent ag must satisfy the sentence associated

with the constraint name term c. For more information about agent constraints, see [Gruninger

95c].

5.2.2.3 Last version of informal competency questions

Using TOVE’s terminology, we present the informal competency questions as:
94

Chapter 5 : Design validation model
• Assuming that an activity1, A, its customer, the occurrences of those subactivities which mod-

ify the assignment of an agent to a role or to a subactivity of A, and also those subactivities

which produce information are given,

1. Is there a time point (during the performance of A) when the customer exists but no agent

is assigned to the “case manager” role?

2. Is there a time point (during the performance of A) when an agent has the “case manager”

role but this agent is not known by the customer?

3. Is there a time point when an agent has the obligation to perform one of the A’s subactivi-

ties but the “case manager” does not know it?

Above, the underlined sentence identifies the appropriate input for the competency questions; i.e.

what should be given so that the questions can be answered.

1. From the previous chapter, recall that in TOVE’s ontology, a process is represented as an (aggregate or complex) activity.
95

Chapter 5 : Design validation model
5.2.3 Terminology

The terms employed by the competency questions are listed in the first column of Table 4. The

FOL representation of each term and a short description of the FOL representation are listed in

the second and third columns of Table 4.

TABLE 4. Terminology for the “case management”

Term FOL representation Description
subactivity subactivity(sub-a,a) subactivity specifies a relationship

between an activity (a), and its sub-

activity (sub-a).

sub-a and a are both activities.
Agent knows Ks(ag,inf,s) Ks is a predicate which specifies

agent ag knows information inf in

situation s.
occurrence of

an action

occursT(a, t) action a occurs at time t.

The truth

value of a

property in a

situation

holds(f, s) In general, holds(f, s) represents the

fact that fluent f is true in situation s,

where fluent is a predicate or func-

tion whose value may change

between situations.
The truth

value of a

property at a

time point

holdsT(f, t) In general, holdsT(f, t) represents

the fact that fluent f is true at time

point t, where fluent is a predicate

or function whose value may

change.
96

Chapter 5 : Design validation model
The truth

value of a

property after

termination of

an activity

holds(f, do(terminate(a),s)). The property f is true when activity

a is terminated.

f is a fluent (i.e. a predicate or func-

tion whose value may change

between situations).

The function do(a,s) is a name of a

situation that results from perform-

ing the action terminate(a) in situa-

tion s.
In our competency questions, we specifically use “holds/2” to represent:

organization-al

role

holds(agent-constraint(ag, role(ag,r)), s) This predicate specifies that agent

ag has role r in situation s.
an agent is

assigned as the

“case man-

ager”.

holds(agent-constraint(ag, case-manager(agc,a)),s) This predicate specifies that in situ-

ation s, the agent agc is the case

manager of process a.

an agent is

assigned to

perform an

activity

holds(agent-constraint(ag, process-obligation(ag,ac)),s) This predicate specifies that in situ-

ation s, the agent ag has the con-

straint to perform activity ac.

customer holds(agent-constraint(ag, process-customer(ag, a)),s) This predicate specifies that in situ-

ation s, agent ag is the customer of

activity a.
any agent con-

straint

holds(agent-constraint(ag,c(x)),s) agent-constraint(ag,c(x)) specifies

agent ag must satisfy the sentence

associated with the constraint name

term c.

TABLE 4. Terminology for the “case management”

Term FOL representation Description
97

Chapter 5 : Design validation model
98

Chapter 5 : Design validation model
5.2.4 Axioms

1. What is the definition of the “case manager”?

As mentioned above, the definition of the “case manager” varies from one enterprise to another.

However, in this thesis we assume that any agent who fills this role should satisfy the following

constraint:

If an agent (agc) is assigned as a case manager of an activity (a) with customer (cus), then this

agent should answer the customer’s queries.

(∀agc,a,cus,f,t1) holdsT(agent-constraint(agc,case-manager(agc,a)),t1) ≡ ((holdsT(agent-

constraint(cus,process-customer(cus,a)),t1) ∧ occursT(ask(f,agc,cus),t1)) ⊃ (∃t)

occursT(answer(f,cus,agc),t) ∧ t => t1). (EQ 54)

2. What are the definitions of a “role”, and a “process customer”?

For formal and informal definitions of organizational roles, customer and agent constraint, see

[Gruninger 95c].

3. What are the assumptions?

Following are the assumptions under which the model will provide the right answers to the

competency questions.

• Assumption HC is the following sentence:

(∀a) (∃cust,t) holdsT(agent-constraint(cust,process-customer(cust,a)),t). (EQ 55)

 stating that an activity should have a customer.

• Assumption CM is the following sentence:

(∀a) (∃agc,t) holdsT(agent-constraint(agc,case-manager(agc,a)),t). (EQ 56)

 stating that the activity should have a case manager.
99

Chapter 5 : Design validation model
• Assumption SO states that the termination times of subactivities which change (impose or

cancel) the agent’s assignments are specified.

(∀sub-a,a,ag,t) subactivity(sub-a,a) ∧ (change-assignment-activity(a,ag) ∨ inf-

producing-activity(a,ag)) ⊃ occursT(teminate(sub-a),t) ≡ (sub-a = A1 ∧ t = T1) ∨... ∨

(sub-a = An ∧ t = Tn). (EQ 57)

(∀a,ag) change-assignment-activity(a,ag) ≡ (∀ac,c,r,s) (¬holds(agent-constraint(ag,c), s)

∧ holds(agent-constraint(ag,c), do(terminate(a),s)) ∨ (holds(agent-constraint(ag,c), s) ∧

¬holds(agent-constraint(ag,c), do(terminate(a),s))) ∧ (c = process-obligation(ag,ac) ∨ c

= role(ag,r)). (EQ 58)

(∀a,ag,s) inf-producing-activity(a,ag) ≡ Ks(ag,inf,do(terminate(a),s)). (EQ 59)

5.2.5 Formal competency questions

Assuming that an activity, A, its customer, the occurrences of those subactivities which modify

the assignment of an agent to a role or to a subactivity of A, and also those subactivities which

produce information are given,

1. Is there a time point (during the performance of A) when the customer exists but no

agent is assigned to the “case manager” role?

Theories ∧ CM ∧ HC ∧ SO |= (∃ sub-a,agc,cus,t) subactivity(sub-a,A) ∧

occursT(terminate(sub-a), t) ∧ holdsT(agent-constraint(cus,process-customer(cus,A)),t) ∧

¬holdsT(agent-constraint(agc,case-manager(agc, A)), t). (EQ 60)

Please note that in the above FOL statement, [subactivity(sub-a,A) ∧ occursT(terminate(sub-

a), t)] ensures that the model only looks for those time points that are during the performance of

A.
100

Chapter 5 : Design validation model
2. Is there a time point (during the performance of A) when an agent has the “case man-

ager” role but this agent is not known by the customer?

Theories ∧ CM ∧ HC ∧ SO |= (∃ sub-a,agc,cus,t) subactivity(sub-a,A) ∧

occursT(terminate(sub-a), t) ∧ holdsT(agent-constraint(agc,case-manager(agc, A)), t) ∧

holdsT(agent-constraint(cus,process-customer(cus,A)),t) ∧ ¬ks(cus, agent-

constraint(agc,case-manager(agc, A)), t). (EQ 61)

Please note that in the above FOL statement, [subactivity(sub-a,A) ∧ occursT(terminate(sub-

a), t)] ensures that the model only looks for those time points that are during the performance of

A.

3. Is there a time point when an agent has the obligation to perform one of the A’s subactiv-

ities but the “case manager” does not know it?

Theories ∧ CM ∧ HC ∧ SO |= (∃ sub-a,ag,agc,cus,t) subactivity(sub-a,A) ∧ holdsT(agent-

constraint(ag,process-obligation(ag,sub-a)), t) ∧ holdsT(agent-constraint(agc,case-

manager(agc, A)),t) ∧ ¬ks(agc,(agent-constraint(ag,process-obligation(ag,sub-a)), t). (EQ 62)

5.3 Changeable agent assignments

5.3.1 Motivating scenario, informal and formal competency question

Except for activities such as “drying paint”1 which are performed independent of any agent, other

activities have to be performed by agents. The process definition should incorporate the possibil-

ity of change in agent assignments. We determine if a given process design satisfies this criterion,

through asking the following question:

1. TOVE categorizes the activities which can be performed independent of agents under “natural activities” [Gruninger 95c].
101

Chapter 5 : Design validation model
• Once an agent is assigned to perform a role or an activity, does there exist any activity which

can change this assignment?

Organizational roles and assignments are all considered as agent constraints. We already

described the concept in section 5.2.2.2 on page 93 and in Table 4 on page 96. With respect to this

concept, the above question is modified into the following informal competency question:

• Given an activity1 A, its subactivities and a set of agent constraints in the form of roles and

process obligations, once a constraint is imposed on an agent, does there exist any subactivity

which can remove this constraint?

This is translated into the following formal competency question:

Theories |= (∃ ag,c,r,ac,s) holds(agent-constraint(ag,c),s) ∧ (∃ sub-1,s-1) subactivity(sub-

1,A) ∧ ¬holds(agent-constraint(ag,c), do(terminate(sub-1), s-1) ∧ (c = role(ag,r) ∨ c =

process-obligaion(ag,ac)). (EQ 63)

5.4 Summary

In this chapter we developed the logical model of three categories of BPR expertise that can be

employed to validate a design process. Table 5 presents the summary of our work. In each row,

the first cell presents the name of the BPR expertise and a brief description. With respect to each

category, the model is able to answer a question(s). The second cell specifies the question(s).

1. From the previous chapter, recall that in TOVE’s ontology, a process is represented as an (aggregate or complex) activity.
102

Chapter 5 : Design validation model
TABLE 5. Summary of the design validation model

BPR expertise The question(s) that the model answers
Dangling information

The contribution of the output of an activity to the continua-

tion of a process(es) should be recognizable.

Existence of Dangling Information might be an indicator of

an incomplete process definition.

Given a set of activities, does there exist a piece

of information that is produced by an activity and

not used by any other activity?

Case management

For each transaction moving through a process, one agent

should be assigned as the contact point for the customer and

the customer should know this agent. We recognize this agent

as the “case manager”.

This is an indicator that the enterprise is capable of capturing

the customer’s demands through all the steps of the transac-

tion.

The “case manager “should be able to trace the transaction.

Traceability indicates that the “case manager” can respond to

the customer’s questions; specifically, the questions about the

transaction’s status.

Given an activity,

is there a time point when no agent is

assigned to the “case manager” role?

is there a time point when an agent has the

“case manager” role but this agent is not

known by the customer?

is there a time point when an agent has the

obligation to perform one of the subactivities

but the “case rmanager” does not know it?

Changeable agent assignments

The process design should allow the modification or cancel-

lation of “agent assignments”.

Given an activity A, its subactivities and a set of

agent constraints in the form of roles and process

obligations, once a constraint is imposed on an

agent, does there exist any subactivity which can

remove this constraint?
103

Chapter 6

Incorporating FOL models into a software tool

We have implemented the logical models of agent/activity design strategies and design validation

expertise in Prolog. We incorporated the implemented models into a software tool which we call

the “Process Integration advisor”, as it assists in integrating the agents and activities within a pro-
cess. The goals of this chapter are to describe the implementation of the logical models in Prolog,

and to demonstrate the usability of the Process Integration advisor in process design and analysis.

To accomplish the first goal, in section 6.1, we focus on the logical model of agent/activity design

strategies and explain its implementation in Prolog1. Since the Prolog axioms for the design vali-

dation model are very similar to their corresponding FOL axioms that we presented in the previ-

ous chapter, we do not discuss the implementation of this model in detail. However, the Prolog

programs of the model can be found in appendix B (sections B.3.3, B.3.4, and B.3.5).

To accomplish the second goal, in sections 6.2, 6.3, and 6.4, we describe a hypothetical process and

apply the Process Integration advisor to it. This allows us to analyze the process design from the

aspects of “dangling information”, “case management”, “changeable agent assignments”, and

“agent/activity design strategies”, and to provide a set of recommendations to improve the robust-

ness of the process in these areas. Table 7 on page 118 summarizes the results of this analysis.

1. Precisely, Quintus Prolog which is one of the implementations of Prolog.
103

Chapter 6 : Incorporating FOL models into a software tool
6.1 Implementation of agent/activity design strategies

In this section, we discuss the implementation of agent/activity design strategies in Prolog.

6.1.1 Implementation technique

The competency question that the FOL model of agent/activity design strategies (developed in

chapter 4) attempted to solve was:

• Given a “base activity”, does there exist any “new activity” that satisfies the "agent/activity

constraint"?

This is a constraint satisfaction problem (CSP). The most straight forward technique to search for

a solution(s) for CSPs is generate-and-test [Shoham 94].

The generate-and-test assigns values to the variables in a way that is consistent with all the con-

straints, or determines whether or not such assignment exists. In general, this technique is a con-

junction of two routines:

• generator (the first routine) enumerates a possible combination of variable values.

• tester (the second routine) examines the values of variables one by one to see whether they

satisfy all the constraints.

If not, then execution backtracks to the generator which generates another possible combina-

tion. This continues iteratively until the tester finds a solution (an instantiation of variables

which satisfies the constraints), or until the generator has exhausted all the possible combina-

tions.

In order to employ the generate-and-test technique to answer the competency question:
104

Chapter 6 : Incorporating FOL models into a software tool
Given a “base activity”, does there exist any “new activity” that satisfies the "agent/activity

constraint"?

we have to address the following issues:

1. What is the constraint that should be satisfied?

2. What is the variable set (i.e. the set of variables to which the generator should assign value) that

characterizes any new activity?

3. What is the domain (possible values) of each variable?

Following we discuss these issues.

1. What is the constraint that should be satisfied?

In the competency question, we want to find a new activity that satisfies the "agent/activity

constraint". From chapter 4, we know the "agent/activity constraint" is:

Given that p is an activity, for all subactivities of p:

if a2 is a subactivity which uses the information, inf, and the performing agent of a2 is ag2,

if a1 is a subactivity which produces the information, inf, and the performing agent of a1 is

ag1,

then:

ag1 and ag2 are the same, or

ag1 and ag2 are a team, or

there is another subactivity such as a3 which uses the information, inf, and ag3 who is

the performing agent of a3 is the same as ag2.

2. What is the variable set (i.e. the set of variables to which the generator should assign

value) that characterizes any new activity?
105

Chapter 6 : Incorporating FOL models into a software tool
In the competency question, we intend to find a “new activity” which satisfies the "agent/activ-

ity constraint". As we remember from chapter 4, a “new activity” is specified by its subactivities

and performing agents. This requires that the variable set that characterizes the new activity

should contain the new activity’s subactivities and their performing agents. However, for the

following reasons, we can prune the variable set to a smaller set that only contains the perform-

ing agents of those subactivities which either produce or use information.

First, since the subactivities of “new activity” and its “base activity” are exactly the same1 and

the subactivities of the “base activity” are given, the variable set can only consist of the new

activity’s performing agents.

Second, since the performing agents of subactivities which neither use nor produce information

do not participate in the "agent/activity constraint" (see step 1), we can further refine the vari-

able set so that it only contains the agents of those subactivities which either produce or use

information.

3. What is the domain (possible values) of each variable?

We assume that the domain of all the variables are finite, explicitly enumerated and the same.

The user specifies this domain. An example for this domain set is {Mike, Mark, John} which

means the performing agent of each subactivity which either produces or uses information can

be Mike, Mark or John.

1. We know this from chapter 4 (page 69 and page 73).
106

Chapter 6 : Incorporating FOL models into a software tool
6.1.2 Algorithm

Using the above variable set, domain of variables, and constraint, the following algorithm finds

answer(s) for the competency question.

1. Given a base activity P, establish the set LAC with the following properties:

Each member of LAC is a subactivity of P which either produces the information used by

another subactivity or uses the information produced by another subactivity.

In the Prolog program, this step is performed by make_inf_dep_set(P, LAC).

Here a generate and test cycle begins.

2. Let LAG denote the domain set; i.e. the set which contains all the possible values for the

agents of those subactivities which either use or produce information. Generate an instanti-

ated list (G) in the following way:

• G is a vector whose elements are members of LAG. G can contain repeated elements.

• The i-th element of G represents the performing agent of the i-th element of LAC. For this

reason, G has the same length as LAC.

For instance, if LAG = {Mike, Mark, John} and LAC = {Producing product specification,

Design}, then one possible G is {Mike, Mike}.

In the Prolog program, the combination of same_length(G, LAC) and generate(G, LAG) per-

forms this step.

3. Test if the instantiated G satisfies the constraint. If yes, G is a solution; otherwise backtrack to

generate another G.

In the Prolog program, the test step is performed by not(violate(LAC,G)) and backtracking is

automatically performed by Prolog.
107

Chapter 6 : Incorporating FOL models into a software tool
4. Check to see if all the possible combinations have been generated. If yes, terminate. If no,

backtrack to step 2 to generate another combination. Prolog performs this step automatically.

It should be mentioned that P, G and LAC together specify the structure of “new activity”. The

subactivities of “new activity” are the same as P. Its performing agents are specified by G and

LAC; i.e. the i-th element of G is the performing agent of that subactivity which is the i-th ele-

ment of LAC.

6.1.3 Prolog program

Using the above algorithm and notation, the top level of our Prolog program (implemented in

Quintus Prolog) is:

agent_assignment(P,LAC,G):-

make_inf_dep_set(P, LAC), make_agent_set(LAG),

same_length(G, LAC), generate(G, LAG), not(violate(LAC,G)).

Abstractly the program works as follows:

• The program is invoked by calling agent_assignment(P,LAC,G).

P should be given.

The program returns “no” if Prolog fails to find any solution. This can be because of one of the

following reasons:

• No subactivity of P produces or uses information, (or the information used or produced by

the P’s subactivities is not defined in the model).

• The domain set, LAG, (that contains the possible values of agents) is empty.
108

Chapter 6 : Incorporating FOL models into a software tool
The program returns an instantiated G, if a solution (i.e. an agent assignment which satisfies the

constraint) is found.

The i-th member of the instantiated G is the assigned value for the performing agent of the i-th

subactivity listed in LAC. LAC is established by the program, as described below.

• Given P, make_inf_dep_set(P, LAC) builds a set (LAC) from the subactivities of P which pro-

duce or use information. LAC does not contain repeated elements.

• The possible values of agents (the members of the domain set) are specified by the user, one

by one. For instance:

agent(Mark).

...
agent(John).

where Mark,...,John are constants.

make_agent_set(LAG) is a utility program whose only role is to make a set (LAG) from these

given individual constants. Thus, for our example LAG will be {Mark,..., John}.

• The combination of same_length/2 and generate/2 is the generator of all possible Gs, includ-

ing those Gs that are solutions (i.e. will cause the tester to become true) and those Gs that are

not solutions (i.e. will cause the tester to fail).

same_length(G, LAC) is one of the built-in Quintus Prolog library predicates. It constructs a list

(G) which has the same length as LAC.

generate(G, LAG) instantiates the members of this list (G), using the possible values of agents

(listed in LAG).

• (violate/2) or more precisely the negation of (violate/2) is the tester of the program. Overall, it

checks whether the generated G satisfies the constraint. The format of the tester (i.e. negation
109

Chapter 6 : Incorporating FOL models into a software tool
of (violate/2)) is the result of transforming the constraint from FOL into Prolog. More details

about how to translate the FOL constraint into Prolog can be found in appendix A.

The commented sub-programs are listed in appendix B (section B.3.6).
110

Chapter 6 : Incorporating FOL models into a software tool
6.2 Pre-order Management Process (PMP)

One of the goals of this chapter is to illustrate the application of Process Integration advisor in the

area of process design. For that, we focus on a hypothetical process, “Pre-order Management Pro-

cess” (PMP). In this section, we introduce PMP and describe its subactivities. In the next section,

we perform an analysis of PMP, using the Process Integration advisor.

6.2.1 An overview of PMP

HC1 Ltd. designs, implements and customizes a variety of telecommunication products and ser-

vices. Pre-order Management Process (PMP) is one of the HC’s processes. The purpose of PMP

is to identify whether or not there is a reasonable chance to make an acceptable profit from a spe-

cific potential order. In summary, PMP identifies a potential order, validates the customer’s busi-

ness needs, selects and assigns a “transaction manager”, evaluates the pre-order from the HC’s

viewpoint, and finally determines whether or not HC should pursue the pre-order. The pre-order,

if selected by PMP, is then passed to another process; i.e. Order Management Process. Here, our

focus is only on PMP.

Figure 5 on page 112 displays the PMP subactivities and roles of performing agents. In the next

sections, we describe these subactivities, in more detail.

1. An acronym for Hypothetical Company.
111

Chapter 6 : Incorporating FOL models into a software tool
FIGURE 5.

Identify Potential Order

Collect and evaluate

Select and assign

Evaluate, drop or

Opportunity Management
Process

has-subactivity

has-subactivity

has-subactivity

has-subactivity

customer data

transaction manager

select the pre-order

 Collect customer data

Drop the pre-order

Evaluate customer data

 Contact product manager

Collect strategical data

Evaluate

Drop the pre-order

Identify transaction
 manager required skills

Identify available
 transaction manager

Select transaction manager

Assign transaction manager

 candidates

has-subactivity

Potential Order
Identifier

Transaction
Manager

Potential Order
Identifier

performs

performs

performs

performs

Skills Manager

performs

Activity Role

has-subactivity

has-subactivity

An overview of PMP subactivities
112

Chapter 6 : Incorporating FOL models into a software tool
6.2.2 PMP subactivities

PMP has the following subactivities:

1. Identify potential order

2. Collect and evaluate customer data

3. Select and assign “transaction manager”

4. Evaluate, drop or select the pre-order

6.2.2.1 Identify potential order
Identify potential order is the first activity of PMP. It starts when one of the employees of HC is

informed that a customer has a need to which HC might be able to respond. The role of such an

employee is the “potential order identifier”.

The “potential order identifier” is and will remain the contact point for the customer until a

“transaction manager” is assigned to the pre-order.

6.2.2.2 Collect and evaluate customer data

The “potential order identifier” collects the customer’s data, including the customer’s business

requirements, budget, requested start date, and requested delivery date.

The “potential order identifier” uses a specific set of criteria to evaluate the customer’s needs,

based on the collected data. Table 6 summarizes the possible outcomes of the evaluation activity.

In each row, the first cell presents an outcome and the second cell presents the activity which is

enabled1 by that outcome.

1. “An activity is enabled by that outcome” means the outcome is the precondition of that activity.
113

Chapter 6 : Incorporating FOL models into a software tool
TABLE 6. The possible outcomes and the activity enabled by each outcome

Outcome

Activity (enabled by the

outcome)

1 The pre-order is promising; i.e. HC is likely to meet the customer’s needs, and thus

the “potential order identifier” will proceed with the pre-order.

Select and assign “transaction

manager”

2 The pre-order is not promising; i.e. HC is not likely to meet the customer’s needs, and

the “potential order identifier” decides to terminate processing the pre-order.

Drop the pre-order

3 The pre-order does not seem promising, i.e. HC is not likely to meet the customer’s

needs, but the “potential order identifier” still decides to proceed with the pre-order.

Contact

the “product manager”

6.2.2.3 Select and assign “transaction manager”

If the result of the activity “evaluate customer data” is #1 or #3 (see the first column of table 6 on

page 114), then an agent should be assigned as the “transaction manager”. The “transaction man-

ager” is an important role. The assigned agent to this role has the following responsibilities:

• From the time the “transaction manager” is assigned and introduced to the customer, s/he will

be the contact point for the customer.

• S/he has to evaluate the pre-order from the HC’s point of view and decides whether or not it is

worth while pursuing. See section 6.2.2.4 on page 116.

• If the pre-order is selected then the “transaction manager” will also be responsible for the next

process; i.e. Order Management Process comprising of design, implementation and delivery

of the order to the customer.

The subactivities of Select and assign “transaction manager” are:

• Identify “transaction manager” required skills

• Identify available “transaction manager” candidates

• Select “transaction manager”
114

Chapter 6 : Incorporating FOL models into a software tool
• Assign “transaction manager”

Following, we describe these subactivities.

• Identify “transaction manager” required skills

As mentioned above, if the pre-order is selected then the “transaction manager” will be respon-

sible for the design, implementation and delivery of the order to the customer. For this reason,

s/he should have the technical knowledge required to understand the product and service,

requested by the customer. As the result of this activity (identify “transaction manager”

required skills), the required skills for the “transaction manager” are identified.

 In more detail,

using the customer’s business requirements and skill templates, the “potential order identi-

fier” recognizes the required skills for the “transaction manager”, sends the result to one of

the skills managers, and requests that the “skills manager” specifies the available HC’s

employees who can be selected as the “transaction manager”.

• Identify available “transaction manager” candidates

The “skills manager” who receives the request and the result (which states the required skills

for the “transaction manager”), performs one of the following tasks:

1. If the “skills manager” (for any reason) can not identify available “transaction manager”

candidates, s/he documents the reason(s) and sends the request to another “skills man-

ager”.

2. S/he uses the databases, containing the HC’s employees skills, to identify those employees

who have the required skills to become the “transaction manager”. S/he verifies the avail-

ability of these employees and documents the result. S/he sends the result, i.e. the avail-

able “transaction manager” candidates, to the “potential order identifier”.
115

Chapter 6 : Incorporating FOL models into a software tool
• Select “transaction manager”

When the “potential order identifier” receives the document containing the available “transac-

tion manager” candidates, s/he selects one of the candidates and sends the result to the “skills

manager”.

• Assign “transaction manager”

The “skills manager” informs the employee who has been selected as the “transaction manager”

(by the “potential order identifier”), and records the assignment.

6.2.2.4 Evaluate, drop or select the pre-order

The assigned “transaction manager” evaluates profitability, and the accompanying risks of the

pre-order. S/he either selects the pre-order for pursuing or decides not to proceed with it. Under

both conditions, the customer is informed of the result. The former condition enables the other

process, i.e. Order Management Process.

6.3 The Process Integration advisor

We encapsulated the implemented logical models of agent/activity design strategies and design

validation into a software tool which we call the Process Integration advisor. The input to this

advisor is a process model (represented in TOVE). Answering a total of six questions, the Process

Integration advisor evaluates the input process from the aspects of “dangling information”, “case

management”, “changeable agent assignments”, and “agent/activity design strategies”. These ques-

tions are:

1. Is there a piece of dangling information in this process?

2. Is there a time when no “case manager” exists for this process?

3. Is there a time when a “case manager” exists but s/he is unknown by the customer?
116

Chapter 6 : Incorporating FOL models into a software tool
4. Is there a time when an agent should perform an activity in the process and the case manager

of the process does not know about it?

5. Is there any activity which can change the assignment of an agent to a role or to a subactivity

of this process?

6. What is the redesigned process(es) which satisfies the “agent/activity design strategies”, lead-

ing to minimal agent setup time?

On the basis of the advisor’s answers to these questions, the designer can analyze the input pro-

cess. The questions should be asked in the form of Prolog queries that are listed in appendix B

(section B.3.13).

6.4 Analysis of PMP

In this section, we demonstrate the application of our work in enterprise design. For that, we

apply the Process Integration advisor to the PMP TOVE1 model and analyze PMP, based on the

results.

6.4.1 Summary of results

Table 7 on page 118 summarizes the results of applying the Process Integration advisor to PMP.

In each row, the first cell specifies the name and a brief description of a category of expertise

(which is part of the advisor) and the second cell summarizes the results of applying that expertise

to PMP.

1. Please note that we have modeled PMP, employing the TOVE ontologies as presented in the previous chapters. The TOVE
model of PMP is found in appendix B (sections B.3.7 and B.3.8).
117

Chapter 6 : Incorporating FOL models into a software tool
TABLE 7. Applying the Process Integration advisor to PMP; Summary of results

Expertise category Evaluation

Dangling information

The contribution of the information produced by an activity

to the continuation of the other activities should be recog-

nizable.

The problem is: the information produced by the

activity of “contact product manager” (see table 6

on page 114) is not used by any other activity.

Case management

A contact point should exist in all steps of a transaction and

the agent who performs this role should be known by the

transaction customer.

This contact point (to which we refer as “case manager”)

should be able to trace the transaction. Traceability indicates

that the case manager can respond to the customer’s ques-

tions, e.g. queries about the transaction status.

The strong point is: in all steps of PMP, there is a

contact point for the customer. The “potential

order identifier” is the contact until the “transac-

tion manager” is assigned and introduced to the

customer.

The problem is: it is not identified in which step of

process, the customer knows that “potential order

identifier” is the contact.

The strong point is: the “case manager” of PMP

can always know to which agent the transaction is

assigned.
118

Chapter 6 : Incorporating FOL models into a software tool
6.4.2 Results

The next sections describe the results of analyzing the PMP design, in the following format.

• With respect to dangling information, case management, and changeable agent assignments,

the results are presented in terms of PMP’s strengths and/or problems, and the recommenda-

tions to improve the problems. More details and insights will be found in the elaboration.

Changeable agent assignments

The process design should allow the modification or cancel-

lation of “agents assignments”.

The strong point is: the reassignment of “skills

managers” is defined.

The problem is: once a “potential order identifier”

or a “transaction manager” is assigned, there does

not exist any activity to change the assignment.
Agent/activity design strategies

The expertise identifies a variety of agent assignments that

lead to minimal process agent setup time.

The following agent assignments improve the

PMP agent setup time.

One agent (with the help of a computer program)

should perform all the PMP’s subactivities.

One agent (with the help of a computer program)

should perform the following subactivities: Iden-

tify potential order, Collect and evaluate customer

data, and Select and assign “transaction manager”.

However “Evaluate, drop or select the pre-order”

can be performed by another agent.

TABLE 7. Applying the Process Integration advisor to PMP; Summary of results

Expertise category Evaluation
119

Chapter 6 : Incorporating FOL models into a software tool
• In regard to agent/activity design strategies, the results are presented in terms of design alter-

natives. Again, more details and insights will be found in the elaboration.

The entire session of executing the advisor is recorded and can be found in appendix B (section

B.3.2).

6.4.2.1 Dangling information
The term “dangling information” refers to the information which is produced by an activity, but

not used by any other activity. Existence of “dangling information” might be an indicator of

incompleteness of the process definition.

• Problem

P1. The information obtained by the “potential order identifier” through the activity of “con-

tact product manager” is not used by any other activity.

• Recommendation

R1. The contribution of the information produced by the activity “contact product manager” to

the other activities should be defined.

• Elaboration

E1. In the “Collect and evaluate customer data”, “potential order identifier” decides to proceed

with the pre-order or not, (see section 6.2.2.2). If the result of evaluation is not promising

and the “potential order identifier” still wants to proceed, s/he has to contact the “product

manager”. The use of product manager’s advice is not included in the process definition

and should be added. The following two examples illustrate some possible usage of this

information.

• The “potential order identifier” will proceed, only if the “product manager” approves.

• The “potential order identifier” does not need the product manager’s approval to pro-

ceed, however, s/he uses the product manager’s advice to re-evaluate his/her decision.
120

Chapter 6 : Incorporating FOL models into a software tool
6.4.2.2 Case management

For each transaction moving through a process, one agent should be assigned as the contact point

for the customer, and the agent who is assigned to this role should be known by the customer. In

the previous chapter, we referred to this role as “case manager”. The existence of “case manager”

is an indicator that the enterprise is capable of capturing the customer’s demands through all steps

of the transaction.

The “case manager” should be able to trace the transaction; i.e. identify which agent is assigned

to which step of the transaction. This indicates that the “case manager” can respond to the cus-

tomer’s questions about the transaction status.

• Strengths

S1. Through all the steps of PMP, a “case manager” exists.

S2. The case managers of PMP; i.e. the “potential order identifier” and later on the “transac-

tion manager”, can trace all the transaction’s agents assignments.

• Problem

P1. It is not stated in which step of PMP the “potential order identifier” is introduced to the

customer as the “case manager”.

• Recommendation

R1. The activity by which the customer recognizes the “potential order identifier” as the “case

manager” should be clearly defined in the process.

• Elaboration

E1. Given a scenario of PMP, the advisor fails to find even one situation in which a “case man-

ager” does not exist. The reasons are:
121

Chapter 6 : Incorporating FOL models into a software tool
• We modeled that the “potential order identifier” is the first “case manager”. S/he is

also the one who initiates the PMP transaction. Therefore in the beginning of the PMP,

a case manager exists.

• We modeled that the “potential order identifier” remains as the case manager until the

“transaction manager” is assigned and introduced to the customer. From that point, the

“transaction manager” becomes and remains as the “case manager”.

E2. PMP starts when the “potential order identifier” is informed about a potential order and

initiates the transaction. The advisor fails to find the situation when the identifier and his/

her role (as the contact point) are known by the customer.

In order to perform the activity of “Collect and evaluate customer data”, the identifier has to

communicate with the customer. Thus we can assume and model that somewhere along this

activity, the “potential order identifier” might describe his/her role to the customer. The

problem with this assumption is: it is implicit. If this is a correct assumption, then it should

be explicitly added to the process definition.

E3. As we will see in section 6.4.2.3, the activity which results in changing a “transaction

manager” is missed and should be included in the process definition. Once included, then

it is recommended that the activity which causes the customer to know the new “transac-

tion manager” also be specified.

E4. For the following reasons, the advisor can deduce that the “case manager” can always

know the information about the assignments of agents to activities.

• The ways that an agent can know the information are modeled; an agent can know the

information if s/he has a read access to a document in which that information is writ-

ten.

• The fact that “potential order identifier” and the “transaction manager” have always

read access to the pre-order record is modeled.
122

Chapter 6 : Incorporating FOL models into a software tool
• The ways that an agent becomes or remains as a “case manager” are modeled.

• The fact that the information about the assignments of agents to activities is docu-

mented in the pre-order record is modeled. Also, the fact that this information is docu-

mented in the pre-order record, as the effect of assignment and reassignments

activities, is modeled. This entails that there is no time gap between assigning or reas-

signing an agent and writing it on the record.

Thus, the advisor fails to find a situation when a process obligation exists but it is not on

record or to find a situation when a process obligation is on record but can not be known by

the “case manager”.

6.4.2.3 Changeable agent assignments

• Strength

S1. The PMP definition includes the activity of reassigning a “skills manager”. This activity

cancels the assignment of the previous agent and at the same time assigns a new agent as

the “skills manager”.

• Problems

P1. No activity is defined to cancel the assignment of an agent as the “potential order identi-

fier”.

P2. Once an agent is assigned as the “transaction manager” (see page 116), no activity is

defined which can cancel this assignment.

• Recommendation

R1. The activities which can cancel the assignments of “transaction managers” and “potential

order identifiers” should be defined and included in the PMP model.
123

Chapter 6 : Incorporating FOL models into a software tool
6.4.2.4 Agent/activity design strategies

• Design alternatives

Following are the design options, ordered based on their effect on improving PMP agent setup

time:

1. One agent (with the help of a computer program) should perform all the subactivities.

2. One agent (with the help of a computer program) should perform “Identify potential

order”, “Collect and evaluate customer data”, and “Select and assign “transaction man-

ager””. However the activity “Evaluate, drop or select the pre-order” can be performed by

another agent.

• Elaboration

E1. With regard to the skills required to perform activities, it is very likely that the first design

alternative is rejected.

Any HC employee who is informed about a potential order can initiate PMP, evaluate the

customer data, and identify the required skills for the “transaction manager” (with the help

of skill templates).

On the other hand, the “transaction manger” should have enough technical knowledge about

the customer’s business requirements to evaluate, drop or select the pre-order and later on

manage the order (if the pre-order is selected). The required skills for the transaction man-

agers directly depend on the requested product and/or service by the customers. The HC’s

products/services vary and so do the skills needed by their transaction managers. Due to this

variety, it is less likely that the same employee who initiates the PMP transaction, (even

with the help of computer programs) will be capable of handling a variety of fairly compli-

cated products and services. Thus the first alternative, stating that one agent performs all the

PMP’s subactivities, is very likely to be rejected.
124

Chapter 6 : Incorporating FOL models into a software tool
E2. With regard to the skills required to perform activities, the second design alternative is

more likely to be accepted.

This alternative entails that the two subactivities: ‘Identify available “transaction manager”

candidates’, and ‘Assign “transaction manager”’ are performed by the same agent who

already performed the previous activities; i.e. ‘Identify potential order’, ‘Collect and evalu-

ate customer data’, and ‘Identify “transaction manager” required skills’.

In order to perform ‘Identify available “transaction manager” candidates’, the performing

agent should know how to use data bases. If we assume that s/he has (or can learn) this skill,

(which is a reasonable assumption), then with respect to the required skills to perform activ-

ities, it is likely that the second design alternative is accepted.

Above, we evaluated the design alternatives, on the sole basis of skills constraint. It should

be mentioned that the acceptance of any alternative can as well depend on other constraints

such as the HC’s empowerment policies. Such constraints are outside of the scope of this

work.
125

Chapter 6 : Incorporating FOL models into a software tool
6.5 Summary

1. In the first section of this chapter, we discussed the implementation of the logical model of

agent/activity design strategies in Prolog. In the current implementation, the Prolog program

proposes alternative agent assignments which would lead to minimal agent setup time. The

user can explore the alternatives and choose a subset of them. The program can be enhanced to

support the following task in the future.

Proposing alternative agent assignments that lead to minimal agent setup time and at the

same time satisfy agents’ capability constraint.

This will be an implementation of the extended FOL model which was presented in section 4.4

on page 79.

2. One of our goals in this chapter was to demonstrate the use of our research in the area of pro-

cess design. We achieved this goal by applying the Process Integration advisor (which embeds

the logical models of agent/ activity design strategies and design validation) to the TOVE

model of a hypothetical process; i.e. Pre-order Management Process (PMP).
126

Chapter 7

Summary and future work
This chapter summarizes the thesis and highlights those aspects of the work which can be

improved.

7.1 Summary of the thesis

The goal of the thesis was to transform process design expertise into an engineering discipline

where its principles can be consistently applied across various scenarios. Towards this goal, we

performed the following steps:

1. Demonstrate the heuristic nature of process design

2. Identify the dominant emerging theme from the heuristics

3. Create an analytical model of agent setup time

4. Develop the logical model of agent/activity design strategies

5. Develop the design validation model

6. Integrate the FOL models into the Process Integration advisor

7. Demonstrate the application of our work
129

Chapter 7 : Summary and future work
In the following sections, we briefly discuss each step, its beneficial effects, and also describe the

connections between these steps.

7.1.1 Demonstrate the heuristic nature of process design

Improving process design and searching for new process solutions are mostly based on rules of

thumb, i.e. heuristics. We reviewed several process design heuristics and concluded that:

• The heuristics are useful at the early stage of design. They introduce some attributes of suc-

cessful processes and can stimulate companies to look for new ways of design.

• The heuristics are ambiguous and unreliable. These characteristics prevent them to be consis-

tently applied across various processes. We needed to develop formal models that can demon-

strate the underlying principles of the process design expertise and enable the consistent

application of the practice across many enterprises.

7.1.2 Identify the dominant emerging theme from the heuristics

We identified that a large number of heuristics propose different ways of assigning agents to per-

form activities. This group includes the heuristics which suggest:

• assigning an individual (with the help of a computer program) or a team to perform a set of

activities, or

• shifting the responsibility of performing an activity from an individual or a group to another.

We focused on this group and decided to describe their underlying principles, through using an

analytical model of agent setup time.

7.1.3 Create an analytical model of agent setup time

We built an analytical model that highlights the agent setup time and its major components. Fol-

lowing is the outline of our model.
130

Chapter 7 : Summary and future work
7.1.3.1 An overview of the analytical model of agent setup time

In order to develop our analytical model of agent setup time, we assume that there are two activi-

ties, Aci and Acj. These activities are respectively performed by two different agents, Agi and Agj.

Activity Acj uses the information contained in the transaction, Tij, caused by the activity Aci.

 {Aci, Agi} --- Tij ---> {Acj, Agj}

There exists agent setup for Agj, if Agj requires some amount of preparation before activity Acj

can be performed.

Equation 64 presents our analytical model of agent setup time.

 PTj Tij() PTj Necessary Tij()() PTj Unnecessary Tij()() PTj Missing Tij()() PTj SKn Agj Acj,()()+ + += (EQ 64)

In this model, PTj(Tij) is the agent setup time, PTj(Necessary(Tij)) is the required time to obtain

the necessary information contained in the transaction (Tij), PTj(Unnecessary(Tij)) is the time

needed to separate the unnecessary information, PTj(Missing(Tij)) is the time required to gather

the missing information, and PTj(SKn(Agj, Acj)) is the required time to acquire new skills in order

to perform Acj.

7.1.3.2 The application of our analytical model of agent setup time
The model allows us to discuss different strategies that can improve agent setup time. Table 8 on

page 133 summarizes the results of this discussion. The agent setup time and its components are

presented in the first row, based on the same notations we employed in the model (see the descrip-

tion of EQ 64 on page 131). The strategies are listed in the second column. Each cell presents the

effect of a strategy on the agent setup time or one of its components; the strategy can either “elim-

inate”, or “reduce” the agent setup time (or one of its components) or has “no effect” on it. The

first column classifies the strategies under two groups:
131

Chapter 7 : Summary and future work
• Manufacturing process strategies

Manufacturing process strategies structure the work so that an agent receives the transactions

which are either identical or within a predefined range. In these situations the amount of context

specific information (contained in the received transaction, Tij) is small and thus the agent setup

time (PTj(Tij)) is trivial.

• Agent/activity design strategies (highlighted cells in table 8 on page 133)

It might be the case that one agent receives different transactions. In this case, the agent needs to

obtain a certain amount of context specific information, prior to performing the activity. For

instance, a designer needs to understand the product requirement before performing the design.

In these situations, a group of agent assignment strategies can reduce the agent setup time. We

refer to this group as “agent/activity design strategies”.

7.1.3.3 The positive aspects of our agent setup time model

• The model enabled us to identify a variety of strategies that can improve the agent setup time;

specifically the agent/activity design strategies which represent the underlying principles of

our focal group of heuristics (presented in section 7.1.2).

7.1.3.4 The limitation of our agent setup time model

• The analytical model of agent setup time model neither formally defined each strategy, nor

provided a foundation for a reasoning system to explore various designs and to select the ones

which can improve the agent setup time. To address these inadequacies, we focused on the

agent/activity design strategies and developed a logical model of them.
132

Chapter 7 : Summary and future work
TABLE 8. The effects of process and agent assignment strategies on agent setup time

Strategies PTj(Tij)a PTj(Necessary(Tij))b PTj(Unnecessary(Tij))c PTj(Missing(Tij))d PTj(SKn(Agj,Acj))e

Man.f Batch orders (items

within the batch)

eliminate eliminate eliminate eliminate eliminate

Transfer line eliminate eliminate eliminate eliminate eliminate

Products that use com-

mon components

reduce reduce reduce reduce reduce

Standard interfaces

between the compo-

nents of assembly

typed products

reduce reduce reduce reduce reduce

Computer controlled

equipment

reduce reduce reduce reduce reduce
133

Chapter 7 : Summary and future work
Agent/

activity

design

Assign one agent to

perform Aci and Acj
g

reduce eliminate eliminate eliminate no effect

Assign one agent with

the help of a computer

program to perform Aci

and Acj
g

reduce reduce reduce reduce no effect

Assign a team to per-

form Aci and Acj
g

reduce no effect reduce reduce reduce

Assign one agent to

perform Acj-1 and Acj-

2
h

reduce reduce reduce reduce reduce

a. Agent setup time
b. The required time to understand necessary information.
c. The required time to separate unnecessary information.
d. The required time to gather missing information.
e. The required time to learn a new skill.
f. Manufacturing process strategies
g. Acj is the activity which uses the information contained in the transaction, caused by the activity Aci.
h. Acj-1 and Acj-2 are two activities that use the information contained in the same transaction.

TABLE 8. The effects of process and agent assignment strategies on agent setup time

Strategies PTj(Tij)a PTj(Necessary(Tij))b PTj(Unnecessary(Tij))c PTj(Missing(Tij))d PTj(SKn(Agj,Acj))e
134

Chapter 7 : Summary and future work
7.1.4 Develop the logical model of agent/activity design strategies

We developed a First Order Logic model of the agent/activity design strategies.

7.1.4.1 The benefits of the logical model of agent/activity design strategies

• The logical model of agent/activity design strategies is important, because 1) it formally

defines these strategies through a set of logical axioms, 2) these axioms provide a foundation

for a reasoning system to search and find alternative designs which can answer the following

question:

Given a process, what is the redesigned process which satisfies the agent/activity design

strategies leading to minimal agent setup time?

This characteristic enables the model to be employed in designing and redesigning processes.

• The model is extendible; i.e. we showed how to add a new class of constraint, agents’ capabil-

ity, to the model without having to redesign the entire representation. The extended model is

capable of answering the following question:

Given a process, what is the redesigned process which satisfies the “agent/activity design

strategies” and at the same time satisfies the “agents’ capability constraint”?

Where satisfying the “agents’ capability constraint” means, if an agent is assigned to an

activity, then that agent should have the skills required to perform that activity.

• The model is precise, i.e. it formally defines the employed terminology. This addresses the

problem of ambiguity in the expertise.

7.1.5 Develop the design validation model

We also developed a First Order Logic model of three categories of BPR expertise; i.e. dangling

information, case management and changeable agent assignments. These categories of expertise

can be employed to validate an existing process design. For this reason, we referred to this logical

model as the design validation model. Table 9 on page 137 summarizes the design validation
135

Chapter 7 : Summary and future work
model. In each row, the first cell presents the name of the category of expertise and a brief

description. With respect to each category, the model is able to answer a question(s). The second

cell specifies this question(s).

7.1.5.1 The benefits of our design validation model

• The problem solving capability of the model is explicit. The second column of Table 9 pre-

sents the questions that the model is able to answer.

• Answering a total of five questions (see the second column of Table 9), the design validation

model enables a reasoning system to determine whether or not there are missing elements in the

process design. These missing elements are: an activity which should use a specific piece of

information is missing; there is no case manager role for the process at a certain time; a piece

of information which is required by the case manager or the process customer is left out from

the process definition; and an activity that should cancel a specific agent assignment is not

defined.

A missing element is not necessarily a sign of a problem. A problem develops when the omis-

sion is due to a design oversight rather than a design decision.

A process designer can use the design validation model to identify these missing parts. With

respect to each omission the designer has two choices, either altering the process design to elim-

inate the omission or to accept the design as it is.
136

Chapter 7 : Summary and future work
TABLE 9. Summary of the design validation model

BPR expertise The question(s) that the model answers

Dangling information

The contribution of the information produced by an activity to the

continuation of the other activities should be recognizable.

Existence of “dangling information” might be an indicator of an

incomplete process definition.

Given a set of activities, does there exist a piece of infor-

mation that is produced by an activity and not used by

any other activity?

Case management

For each transaction moving through a process, one agent should

be assigned as the contact point for the customer and the customer

should know this agent. We recognize this agent as the “case man-

ager”. This is an indicator that the enterprise is capable of captur-

ing the customer’s demands through all the steps of the transaction

The “case manager” should be able to trace the transaction. Trace-

ability indicates that the “case manager” can respond to the cus-

tomer’s questions, in specific the questions about the transaction

status.

Given an activity,

is there a time point when no agent is assigned to the

“case manager” role?

is there a time point when an agent has the “case man-

ager” role but this agent is not known by the cus-

tomer?

is there a time point when an agent has the obligation

to perform one of the subactivities but the “case rman-

ager” does not know it?

Changeable agent assignments

The process design should allow the modification or cancellation

of “agents assignments”.

Given an activity, its subactivities and a set of agent

constraints in the form of roles and process obligations,

once a constraint is imposed on an agent, does

there exist any subactivity which can remove this con-

straint?
137

Chapter 7 : Summary and future work
7.1.6 Integrate the FOL models into the Process Integration advisor

We implemented the logical models in Quintus Prolog. We encapsulated the implemented models

into a software tool to which we refer as the Process Integration advisor.

7.1.6.1 The benefits of the Process Integration advisor

• Incorporating the design validation model, the advisor assists designers to improve the design

of an existing process or to refine the design of a new process before implementing the design.

• Embedding the logical model of agent/activity design strategies, the advisor automatically

generates alternative agent assignments that achieve minimal agent setup time and thus can be

employed to design or redesign processes, providing that the design perspective is improving

the agent setup time.

• The Process Integration advisor is a software tool which embeds the definitive logical models of

BPR expertise. This allows the users to understand the definition of the employed terminology.

Since the embedded models are characterized by the questions they can answer, the analysis

tasks that the advisor can perform are clear. For this reason, the users know what they should or

should not expect from the advisor and determine whether or not the advisor can address their

needs.

7.1.7 Demonstrate the application of our work

In order to demonstrate the practical use of our research in the area of process design, we applied

the Process Integration advisor to a sample process; i.e. Pre-order Management Process (PMP).

Using the results, we identified the PMP’s problems and strengths and provided a set of recom-

mendations to improve its design.
138

Chapter 7 : Summary and future work
7.2 Future work

In this section, we introduce those areas of the work which can be improved.

7.2.1 Analytical model of agent setup time

• We developed an analytical model of agent setup time. The model which characterized some

important components of agent setup, was based on two activities and two agents. Further

work should be done to elaborate each component of agent setup time and extend the model

with respect to a larger group of activities and agents. This might result in recognition of other

strategies that can decrease the agent setup time.

7.2.2 Ontologies

• TOVE information ontology should be further developed to represent:

1. information at different levels of abstraction

2. the relationship between the information and its storage

3. different classes of information producing and information using actions.

7.2.3 Implementation

• We implemented the FOL model of agent/activity design strategies. The program currently

finds those agent assignments which achieve minimal agent setup time. We can enhance it to

find those agent assignments that lead to minimal agent setup time, and at the same time sat-

isfy the agents capability constraint. This will be the implementation of the extended model

that was discussed in section 4.4 on page 79.

• We used the “generate-and-test” technique to implement the FOL model of agent/activity

design strategies in Prolog. The generator enumerated a possible combination of values for

agents. The tester examined the combination to see if it was a solution; i.e. the values of
139

Chapter 7 : Summary and future work
agents satisfied the constraint. Our program was inefficient because many combinations were

generated that had no chance of being solutions. We can improve the program by pushing the

tester inside the generator as deeply as possible. This means instead of testing the complete

combination, each agent should be checked as it is being assigned a value.

• In this thesis, we did not direct our efforts towards the Process Integration advisor’s user inter-

face, its ability to capture the model and translate the utilized terminology to different users.

These capabilities which are independent of the advisor’s reasoning tasks need to be devel-

oped.

7.2.4 Developing other formal models of BPR

• Our work is one step towards formalization of the business process reengineering expertise.

Much work still remains in discovering the other underlying principles of BPR and construct-

ing formal models of them.

One of our next steps can be formalizing the “Concurrency in information intensive processes”

which was one of the emerging themes from the reviewed heuristics. We introduced the concept

in the conclusion of chapter 2.
140

Appendix A
In this section, we demonstrate how a FOL sentence which has the similar structure to the "agent/

activity constraint" can be translated into a Prolog axiom. This will rationalize the format of tester

routine not(violate/2) in our Prolog program (see chapter 6, section 6.1.3 on page 104).

A.1 Translating constraints from FOL into the PROLOG
axioms

Consider (EQ 1):

(∀inf,a1,a2,ag1,ag2) uses_information(a2,inf, ag2) ∧produces_information(a1,inf,ag1) ⊃

(ag1 = ag2 ∨ team(ag1,ag2)). (EQ 1)

It states that for all the activities, if one activity uses the information which is produced by the

other then their performing agents should be the same or a team. This sentence is a simplified ver-

sion of the axiom that expressed "agent/activity constraint" (see chapter 4). The translation of this

sentence from FOL into Prolog is described through the following steps:
151

Appendix A
1. We transfer (EQ 1) into its equivalent form in which the universal quantifiers are eliminated.

Hence, we obtain:

¬ (∃ inf,a1,a2,ag1,ag2) uses_information(a2,inf, ag2) ∧ produces_information(a1, inf, ag1) ∧

¬(ag1=ag2) ∧¬ team(ag1,ag2). (EQ 2)

2. In (EQ 3), we introduce a new FOL predicate (i.e. test) in which the constraint is falsified:

test ≡ (∀inf,a1,a2,ag1,ag2) uses_information(a2,inf,ag2) ∧ produces_information(a1,inf,ag1)

∧ ¬ (ag1=ag2) ∧¬ team(ag1,ag2). (EQ 3)

3. (EQ 3) is equivalent to the following Prolog axiom:

test:- uses_information(a2,inf,ag2), produces_information(a1,inf, ag1), not(ag1=ag2),

not(team(ag1,ag2)). (EQ 4)

4. Thus, the original sentence (EQ 1) can be represented in Prolog as:

not(test). (EQ 5)
152

Appendix B
B.3 Files
B.3.1 all_thesis.log

Quintus Prolog Release 3.1.1 (DECstation, Ultrix 4.x)
Copyright (C) 1990, Quintus Corporation. All rights reserved.
2100 Geng Road, Palo Alto, California U.S.A. (415) 813-3800

%% thesis_ld_demo.pl compiled in module user, 7.017 sec 109,032 bytes
| ?- dangling_information(ACT, INF).

this query finds the dangling information
meaning- the information produced by an activity is not used
by any other activity in the transaction

ACT = contact_product_market_manager(_17473),
INF = contact_manager_advice(_17473) ;

no
| ?- no_contact(ACT).
This query finds the activities that when they occur-

no agent is assigned as the contact point for the customer
1 Please wait, Prolog is searching the data base
2 Please wait, Prolog is searching the data base
3 Please wait, Prolog is searching the data base
4 Please wait, Prolog is searching the data base
5 Please wait, Prolog is searching the data base
7 Please wait, Prolog is searching the data base
8 Please wait, Prolog is searching the data base
9 Please wait, Prolog is searching the data base
10 Please wait, Prolog is searching the data base
12 Please wait, Prolog is searching the data base
13 Please wait, Prolog is searching the data base
14 Please wait, Prolog is searching the data base
18 Please wait, Prolog is searching the data base

no
| ?- contact_unknown(ACT).
This query finds the activities that when they occur
the contact point exists but the customer does not know this contact point
157

Appendix B
1

1 Please wait, Prolog is searching the data base

ACT = identify_potential_order(trn) ;

2

2 Please wait, Prolog is searching the data base

ACT = collect_customer_data(trn) ;

3

3 Please wait, Prolog is searching the data base

4

4 Please wait, Prolog is searching the data base

5

5 Please wait, Prolog is searching the data base

7

7 Please wait, Prolog is searching the data base

8

8 Please wait, Prolog is searching the data base

9

158

Appendix B
9 Please wait, Prolog is searching the data base

10

10 Please wait, Prolog is searching the data base

12

12 Please wait, Prolog is searching the data base

13

13 Please wait, Prolog is searching the data base

14

14 Please wait, Prolog is searching the data base

18

18 Please wait, Prolog is searching the data base

18

18 Please wait, Prolog is searching the data base

no
| ?- contact_loses_agent_trace(ACT, AG, ROLE, TRN_CON, ACTD, S).

This query identifies the situations when an agent
is assigned to perform an activity but
the transaction contact can not know about it

 Please wait, Prolog is searching the data base
7 Please wait, Prolog is searching the data base
8 Please wait, Prolog is searching the data base
159

Appendix B
9 Please wait, Prolog is searching the data base
10 Please wait, Prolog is searching the data base
12 Please wait, Prolog is searching the data base
13 Please wait, Prolog is searching the data base
14 Please wait, Prolog is searching the data base
18 Please wait, Prolog is searching the data base
18 Please wait, Prolog is searching the data base

no
| ?- change_assignment(pmp(trn), ASSGT, ACT).

this query finds those agent assignments for which
modification is defined

ASSGT =
has_process_obligation(identify_transaction_manager_candidates(_17044),skills_manager,ag1,_
17044),
ACT = reassign_skills_manager(_17091,_17092,skills_manager,trn) ;

no
| ?- no_change_assignment(P, ASSGT).

this query finds those agent assignments for which
modification is not defined

P = _15817,
ASSGT = transaction_manager(ag2,_17020) ;

P = _15817,
ASSGT = potential_order_identifier(ag2,_17020) ;

no
| ?- agent_assignment(pmp(trn), LAC, G).

LAC =
[collect_customer_data(trn),collect_strategical_data(trn),contact_product_market_manager(trn),d
rop(trn),evaluate(trn),evaluate_customer_data(trn),identify_potential_order(trn),identify_transact
ion_manager_candidates(trn),identify_transaction_manager_required_skills(trn),select_transacti
on_manager(trn),verify_availablity_of_transaction_manager_candidates(trn),assign_transaction_
manager(_17182,trn),assign_transaction_manager(_17615,trn)],
G =
[skills_manager,skills_manager,skills_manager,skills_manager,skills_manager,skills_manager,s
160

Appendix B
kills_manager,skills_manager,skills_manager,skills_manager,skills_manager,skills_manager,skil
ls_manager] ;

LAC =
[collect_customer_data(trn),collect_strategical_data(trn),contact_product_market_manager(trn),d
rop(trn),evaluate(trn),evaluate_customer_data(trn),identify_potential_order(trn),identify_transact
ion_manager_candidates(trn),identify_transaction_manager_required_skills(trn),select_transacti
on_manager(trn),verify_availablity_of_transaction_manager_candidates(trn),assign_transaction_
manager(_17182,trn),assign_transaction_manager(_17615,trn)],
G =
[potential_order_identifier,potential_order_identifier,potential_order_identifier,potential_order_i
dentifier,potential_order_identifier,potential_order_identifier,potential_order_identifier,potential
_order_identifier,potential_order_identifier,potential_order_identifier,potential_order_identifier,
potential_order_identifier,potential_order_identifier] ;

no
| ?- agent_assignment(select_and_assign_transaction_manager(TRN), LAC, G).

TRN = _15825,
LAC =
[identify_transaction_manager_candidates(TRN),identify_transaction_manager_required_skills(
TRN),select_transaction_manager(TRN),verify_availablity_of_transaction_manager_candidates(
TRN),assign_transaction_manager(_17184,TRN)],
G = [skills_manager,skills_manager,skills_manager,skills_manager,skills_manager] ;

TRN = _15825,
LAC =
[identify_transaction_manager_candidates(TRN),identify_transaction_manager_required_skills(
TRN),select_transaction_manager(TRN),verify_availablity_of_transaction_manager_candidates(
TRN),assign_transaction_manager(_17184,TRN)],
G =
[potential_order_identifier,potential_order_identifier,potential_order_identifier,potential_order_i
dentifier,potential_order_identifier] ;

no
| ?-
161

Appendix B
B.3.2 thesis_ld_demo.pl
%The required files for demo.
% Writer: Katayoun Atefi.
% Date: May 1997.

:- ['model.pl'].

:- ['scenario.pl'].
:- ['driver1.pl'].
:- [subactivity_def].
:- [library(strings)].
:- [library(sets)].
:- [library(lists)].
:- [library(basics)].
:- unknown(_,fail).

:- ['main_def.pl'].
:- ['dng.pl'].
:- ['trc.pl'].
:- ['chg.pl'].
:-ensure_loaded(stp).
162

Appendix B
B.3.3 dng.pl
%Dangling information expertise
% Writer: Katayoun Atefi.
% Date: May 1997.

:- multifile produces_information/2.
:- multifile uses_information/2.

/*
:- unknown(_,fail).
:- ['model.pl'].
*/

dangling_information(A, Inf) :-
 nl,
 print('this query finds the dangling information'),
 nl,
 print('meaning- the information produced by an activity is not used'),
 nl,
 print('by any other activity in the transaction'),
 nl,
 produces_information(A,Inf),
 \+(test(Inf)).

test(Inf):- uses_information(A, Inf).
163

Appendix B
B.3.4 trc.pl
% The Case management expertise.
% Writer: Katayoun Atefi.
% Date: May 1997.

:- dynamic holds/2.
:- multifile holds/2.
:- multifile holdsT/2.
:- multifile occursT/2.

/*
:- ['scenario.pl'].
:- [driver1].
:- [main_def].
*/

/*-------no_contact/1 returns those activities
 that when they occur no agent is defined as
 the contact point for the customer.

 This program also needs the driver for its execution.
 The Situations in the scenario
 should be fully instantiated, otherwise when the control
 is transferred to the driver the
 program does not work.
 ------------*/

no_contact(ACT):-
 print('This query finds the activities that when they occur-'),
 nl, nl,
 print('no agent is assigned as the contact point for the customer'),
 nl,
 occursT(terminate(ACT), S), write(S),
 write(' Please wait, Prolog is searching the data base'), nl,
 \+ holdsT(agent_constraint(AG, contact(AG, TRN)), S).

/*___________
 contact_un_known/1 returns the activities that at their
 occurrence a contact exists but not known by the customer.
 ______________________*/
164

Appendix B
contact_unknown(ACT):-
 print('This query finds the activities that when they occur'),
 nl,
 print('the contact point exists but the customer does not know this contact point'),
 nl,
 occursT(terminate(ACT), S),
 holdsT(agent_constraint(AG, contact(AG, TRN)), S) ,
 holdsT(agent_constraint(CUST, customer(CUST, TRN)), S), nl, nl, write(S),
 \+ test_1(S) .

test_1(S):-
 nl, nl, write(S), write(' Please wait, Prolog is searching the data base'), nl,
 holdsT(knows(contact(AG, TRN), CUST), S).

/*----contact_loses_agent_trace/6 is a query which identifies---
 an agent (AG) who has the role (ROLE),
 is assigned to perform an activity (ACT) and the agent who is
 the Contact Point for the customer does not know about this assignment.
-----------*/

contact_loses_agent_trace(ACT, AG, ROLE, TRN_CON, ACTD, S):-
 nl,
 print('This query identifies the situations when an agent'),
 nl,
 print('is assigned to perform an activity but'),
 nl,
 print('the transaction contact can not know about it'),
 nl,nl,write(' Please wait, Prolog is searching the data base'), nl,
 occursT(terminate(ACTD), S),
 /*This causes that S is instantiated*/

 holdsT(agent_constraint(AG, has_process_obligation(ACT, ROLE, AG, TRN)), S),
 /*This finds if at S an agent is assigned to perform an activity */

 holdsT(agent_constraint(TRN_CON, contact(TRN_CON, TRN)), S),
 /* This identifies who is the contact at S*/

 write(S), write(' Please wait, Prolog is searching the data base'), nl,

 \+ test_2(S).

165

Appendix B
test_2(S):-
 holdsT(can_know(has_process_obligation(ACT, ROLE, AG, TRN), TRN_CON), S).
 /* This checks if at S the contact can not know who is assigned */

%==

contact_traces(ACT, AG, ROLE, TRN_CON, S):-
 occursT(terminate(ACTD), S),
 /*This causes that S is instantiated*/

 holdsT(agent_constraint(AG, has_process_obligation(ACT, ROLE, AG, TRN)), S),
 /*This finds if at S an agent is assigned to perform an activity */

 holdsT(agent_constraint(TRN_CON, contact(TRN_CON, TRN)), S),
 /* This identifies who is the contact at S */

 write(S), write(' Please wait, Prolog is searching the data base'), nl,
 holdsT(can_know(has_process_obligation(ACT, ROLE, AG, TRN), TRN_CON), S).
166

Appendix B
B.3.5 chg.pl
%The changeable agent assignments expertise.
% Writer: Katayoun Atefi.
% Date: May 1997.

:- dynamic holds/2.
:- multifile holds/2.
:- multifile has_isubactivity/2.

/*
:- [library(strings)].
:- unknown(_,fail).
:- ['model.pl'].
:- [main_def].
:- ['subactivity_def.pl'].

*/

/* The following Agent Constraints are defined: */

agent_constraint(AG, transaction_manager(AG, TRN)).
agent_constraint(AG, potential_order_identifier(AG, TRN)).
agent_constraint(AG, has_process_obligation(identify_transaction_manager_candidates(TRN),
skills_manager, AG, TRN)).

/*__*/

/*--------change_assignment/2 finds if any subactivity (ACT) of process (P)
 is defined to change an agent constraint (ASSGT).
-------------*/

change_assignment(P, ASSGT, ACT):-
 nl,
 print('this query finds those agent assignments for which'),
 nl,
 print('modification is defined'),
 nl,
 gensym(ag, AG),
 agent_constraint(AG, ASSGT),
 assert(holds(agent_constraint(AG, ASSGT), s_1)),
167

Appendix B
 holds(agent_constraint(AG, ASSGT), s_1),
 instantiate(P, ACT, s_1),
\+ (holds(agent_constraint(AG, ASSGT), do(terminate(ACT), s_1))).

new(P, ASSGT,ACT, AG, S_1):-
 instantiate(P, ACT, S_1),
\+ (holds(agent_constraint(AG, ASSGT), do(terminate(ACT), S_1))).

instantiate(P, ACT, S):-
 has_isubactivity(P, ACT).

/*--------no_change_assignment/3 finds if no subactivity (ACT)
 of process (P) is defined to change an agent constraint (ASSGT)
-------------*/

no_change_assignment(P, ASSGT):-

nl,
print('this query finds those agent assignments for which'),
nl,
print('modification is not defined'),
nl,
gensym(ag, AG),
agent_constraint(AG, ASSGT),
assert(holds(agent_constraint(AG, ASSGT), s_1)),
holds(agent_constraint(AG, ASSGT), s_1),

 \+ new(P, ASSGT, ACT, AG, s_1) ,
retract(holds(agent_constraint(AG, ASSGT), s_1)).
168

Appendix B
B.3.6 stp.pl
%The agent/activity design strategies expertise.
% Writer: Katayoun Atefi.
% Date: May 1997.

:- multifile uses_information/2.
:- multifile produces_information/2.
:- multifile has_subactivity/2.
:- multifile has_isubactivity/2.

/* --------------------------
 LOADING LIBRARIES
--------------------------- */
:- ensure_loaded(library(lists)).
:- ensure_loaded(library(basics)).
:- ensure_loaded(library(prompt)).
:- ensure_loaded(library(ask)).
:- ensure_loaded(pmp_agents). /* agents file */
:- ensure_loaded(subactivity_def).
:- ensure_loaded(model).
:- unknown(_,fail).
/*
:- ensure_loaded(oosap).

*/

/* --
 This program makes a set of the subactivities of process A
 which are information related.

 Input = A (an instantiated process) .
 Output = LAC (a set of informtion dependent activities).
---*/
make_inf_dep_set(A, LAC):-

setof(A2, A1^inf_rel(A,A1,A2), LAC).
%888

/* --
 This program finds if two subactivities (A1 & A2)
 of process A, are information related; i.e.
 either A1 is infrmation dependent on A2
169

Appendix B
 or visa versa.
--*/
inf_rel(A,A1,A2):-

has_isubactivity(A, A1),
has_isubactivity(A, A2),
uses_information(A2, Inf),
produces_information(A1, Inf).

inf_rel(A,A1,A2):-
has_isubactivity(A, A1),
has_isubactivity(A, A2),
uses_information(A1,Inf),
produces_information(A2,Inf).

%888

/* --

 This program makes a set of the possible values for agents
 that are specified (instantiated) individually by the user
 in the form of agent(ag).

 Output = LAG (a list)
--*/
make_agent_set(LAG):-

findall(Ag, agent(Ag) , LAG).
%888

/* --------------------------------------
 This prog. generates sublists [X|Xs] from list Ys.
-- */

generate([X|Xs],Ys):-
member(X,Ys), generate(Xs,Ys).

generate([],Ys).
170

Appendix B
%888

/*------------------------------------
 This is the program which is invoked by the user.

 This program generates a set of instantiated agents
 and tests if the set satisfies the constraint.
 A should be instantiated.
 The program either returns "no" which means
 no agent assignment can be found to satisfy the constraint
 (either no agents are stated in the possible_agents file,
 no activity produces the information used by the other
 activity)
 OR
 returns LAC and G, meaning that there is a solution and that
 is G. The ith member of G is the performing agent of the ith
 member of LAC.

 It performs the follwing tasks:
 1) make_inf_dep_set/2 which establishes a set LAC from
 information dependent sub-activities of process A.

 2) make_agent_set/1 which puts all individual
 agents into a set. (this becomes the domain set of each agent).

 3) same_length/2 which makes a list G which
 has the same length as LAC.

 4) generate which instantiates G from the domain; i.e. LAG.

 5) checks to see if the falsification of the constraint is false;
 i.e. the constraint is satisfied.

 Input = A (a process)
 Output = LAC (a set of subactivities which are information dependent,
 Output = G (a set of instantiated agents which will be the solution)
---------------------------------------*/
agent_assignment(P, LAC, G):-

make_inf_dep_set(P, LAC),
make_agent_set(LAG),
same_length(G, LAC),
generate(G, LAG),
171

Appendix B
\+ violate(LAC, G).

/*--
This program checks if the instantiated G violate the constraint,
 through the following steps:

 1) choosing three members of LAC
 (i.e. the information related list).

 2) checking if one of these members
 produces the information used by
 two others.

 3) finding the performing agents

 of these activities from the list G.

 4) checking if these agents violate the
 constraint.

 If no, then back track to step (1) to see if other
 agents of G also vioalte the constraint.
 if no, then G is a solution because none of its
 members violated the constraint.
 If yes, then G is not a solution because one
 of its members violate the constraint, thus
 back track to program "generate" to
 instantiate another G.

--*/
violate(LAC, G):-

uses_information(XAC,Inf),
 member(XAC,LAC),

produces_information(YAC,Inf),
member(YAC,LAC),

 /* checking if one uses the information
 produced by the other*/

nth1(NX, LAC, XAC),
nth1(NY, LAC, YAC),
172

Appendix B
/* finding the number of members of G
 who perform the activities:
 XAC, YAC.
 */

nth1(NX, G, X),
nth1(NY, G, Y),

 /* finding the members of G
 who perform the activities:
 XAC, YAC.
 */

\+ ((X = Y)),

 /* checking if those members of G
 who perform the activities:
 XAC, & YAC, do not falsify the constraint.
 */

/* the agent of the activity which produces
 the inf and the agents of two activities
 which use it
 are not the same. */

\+ (any_team(X,Y)),
 /* the agent of the activity which produces
 the information does not have a team relationship
 with the agents of two activities
 which use the information. */

\+ (uses_information(ZAC,Inf),

 member(ZAC,LAC),
 XAC \==ZAC,
 nth1(NZ, LAC, ZAC),
 nth1(NZ, G, Z),
 X = Z).

 /* the agents of the different activities which use
 the same information are not the
 same.
173

Appendix B
 */

/*-------------------------------------
This program establishes a team relationship
between two agents (X and Y), no matter in the database
X is the one who is stated has a team relationship
with Y (i.e. X is the first argument)
or, Y is the one who is stated has a team relationship
with X (i.e. X is the second argument).
 --------------------------------------*/
any_team(X,Y):-

team(X,Y);
team(Y,X).
174

Appendix B
B.3.7 model.pl
%The PMP TOVE model.
% Writer: Katayoun Atefi.
% Date: May 1997.

:- multifile has_subactivity/2.

:- multifile holds/2.
:- dynamic holds/2.

:- multifile uses_information/2.
:- multifile produces_information/2.

activity(pmp(TRN)).

has_subactivity(pmp(TRN), identify_potential_order(TRN)).
has_subactivity(pmp(TRN), collect_and_evaluate_customer_data(TRN)).
has_subactivity(pmp(TRN), select_and_assign_transaction_manager(TRN)).
has_subactivity(pmp(TRN), evaluate_drop_select(TRN)).
has_subactivity(pmp(TRN), drop(TRN)).

has_subactivity(collect_and_evaluate_customer_data(TRN), collect_customer_data(TRN)).
has_subactivity(collect_and_evaluate_customer_data(TRN), evaluate_customer_data(TRN)).
has_subactivity(collect_and_evaluate_customer_data(TRN), contact_product_manager(TRN)).
has_subactivity(collect_and_evaluate_customer_data(TRN), drop(TRN)).

has_subactivity(select_and_assign_transaction_manager(TRN),
identify_transaction_manager_required_skills(TRN)).
has_subactivity(select_and_assign_transaction_manager(TRN),
assign_skills_manager_for_available_transaction_manager_candidates(AG0, AG, TRN)).
has_subactivity(select_and_assign_transaction_manager(TRN), reassign_skills_manager(AG,
AG1, skills_manager, TRN)).
has_subactivity(select_and_assign_transaction_manager(TRN),
identify_transaction_manager_candidates(TRN)).
has_subactivity(select_and_assign_transaction_manager(TRN),
verify_availablity_of_transaction_manager_candidates(TRN)).
has_subactivity(select_and_assign_transaction_manager(TRN),
select_transaction_manager(TRN)).
175

Appendix B
has_subactivity(select_and_assign_transaction_manager(TRN),
assign_transaction_manager(AG, TRN)).

has_subactivity(select_and_assign_transaction_manager(TRN),
introduce_transaction_manager_to_customer(AG, CUST, TRN)).

has_subactivity(evaluate_drop_select(TRN), collect_strategical_data(TRN)).
has_subactivity(evaluate_drop_select(TRN), evaluate(TRN)).
has_subactivity(evaluate_drop_select(TRN), drop(TRN)).

%---
/* uses_information/2 specifies that first argument which is
 an activity uses the information, specified by the second argument.*/

uses_information(customer_call(TRN), contact(AG,TEL, TRN)).

uses_information(drop(TRN), not_acceptable_and_drop(TRN)).
uses_information(drop(TRN), dropped(TRN)).

uses_information(analysis, reason_drop(TRN)).

uses_information(evaluate_customer_data(TRN), customer_business_needs(TRN)).
uses_information(evaluate_customer_data(TRN), customer_budget(TRN)).
uses_information(evaluate_customer_data(TRN), customer_exp_start_date(TRN)).
uses_information(evaluate_customer_data(TRN), customer_exp_end_date(TRN)).
uses_information(evaluate_customer_data(TRN), products_table).

uses_information(contact_product_manager(TRN), not_acceptable_but_proceed(TRN)).

uses_information(identify_transaction_manager_required_skills(TRN),
acceptable_and_proceed(TRN)).
uses_information(identify_transaction_manager_required_skills(TRN),
not_acceptable_but_proceed(TRN)).

uses_information(identify_transaction_manager_required_skills(TRN),
customer_business_needs(TRN)).
uses_information(identify_transaction_manager_candidates(TRN),
transaction_manager_required_skills(TRN)).
uses_information(identify_transaction_manager_candidates(TRN), employees_skills).
176

Appendix B
uses_information(verify_availablity_of_transaction_manager_candidates(TRN),
potential_transaction_managers(TRN)).
uses_information(verify_availablity_of_transaction_manager_candidates(TRN),
employees_availability).
uses_information(select_transaction_manager(TRN),
available_potential_transaction_managers(TRN)).
uses_information(assign_transaction_manager(AG, TRN), selected_transaction_manager(TRN)).

uses_information(collect_strategical_data(TRN), assigned_transaction_manager(AG,TRN)).
uses_information(collect_strategical_data(TRN), acceptable_and_proceed(TRN)).
uses_information(collect_strategical_data(TRN), not_acceptable_but_proceed(TRN)).

uses_information(evaluate(TRN), acceptable_and_proceed(TRN)).
uses_information(evaluate(TRN), not_acceptable_but_proceed(TRN)).
uses_information(evaluate(TRN), profit(TRN)).
uses_information(evaluate(TRN), producibility(TRN)).
uses_information(evaluate(TRN), allignment_with_goals(TRN)).

uses_information(order_management(TRN), selected(TRN)).
%--
/* produces_information/2 specifies that first argument which is
 an activity produces the information, specified by the second argument.*/
produces_information(drop(TRN), reason_drop(TRN)).

produces_information(collect_customer_data(TRN), customer_business_needs(TRN)).
produces_information(collect_customer_data(TRN), customer_budget(TRN)).
produces_information(collect_customer_data(TRN), customer_exp_start_date(TRN)).
produces_information(collect_customer_data(TRN), customer_exp_end_date(TRN)).

produces_information(evaluate_customer_data(TRN), acceptable_and_proceed(TRN)).
produces_information(evaluate_customer_data(TRN), not_acceptable_and_drop(TRN)).
produces_information(evaluate_customer_data(TRN), not_acceptable_but_proceed(TRN)).
177

Appendix B
produces_information(contact_product_manager(TRN), contact_manager_advice(TRN)).

produces_information(identify_transaction_manager_required_skills(TRN),
transaction_manager_required_skills(TRN)).
produces_information(identify_transaction_manager_candidates(TRN),
potential_transaction_managers(TRN)).
produces_information(verify_availablity_of_transaction_manager_candidates(TRN),
available_potential_transaction_managers(TRN)).
produces_information(select_transaction_manager(TRN), selected_transaction_manager(TRN)).
produces_information(assign_transaction_manager(AG,TRN),
assigned_transaction_manager(AG,TRN)).
produces_information(introduce_transaction_manager_to_customer(AG, CUST, TRN),
contact(AG, TEL, TRN)).

produces_information(collect_strategical_data(TRN), profit(TRN)).
produces_information(collect_strategical_data(TRN), producibility(TRN)).
produces_information(collect_strategical_data(TRN), allignment_with_goals(TRN)).

produces_information(evaluate(TRN), selected(TRN)).
produces_information(evaluate(TRN), dropped(TRN)).
178

Appendix B
B.3.8 main_def.pl
%Roles in PMP.
% Writer: Katayoun Atefi.
% Date: May 1997.

:- dynamic holds/2.
:- multifile holds/2.

/*-------------------contact pointS---------------*/
/* This group of axioms define as the effect of what activities an agent is
assigned as the contact point for the customer.*/

%
/*From the start of a transaction, identifier is introduced as the contact point
 for the customer.*/
holds(agent_constraint(AG, contact(AG, TRN)), s_0):-
 holds(agent_constraint(AG, potential_order_identifier(AG, TRN)), s_0).

%
/*The identifier remains the contact point for the customer
until the transaction manger is introduced to the customer. */

holds(agent_constraint(AG1, contact(AG1, TRN)), do(terminate(A), S)):-
 holds(agent_constraint(AG1, contact(AG1, TRN)), S),
 not(A = introduce_transaction_manager_to_customer(AG, CUST, TRN)).

%
/*When the transaction manager is introduced to the customer, s/he
 becomes the contact point for the customer. */

holds(agent_constraint(AG, contact(AG,TRN)), do(terminate(A), S)):-
 A = introduce_transaction_manager_to_customer(AG, CUST, TRN).

/*From the time that the transaction manager is introduced till the end of the process,
179

Appendix B
s/he remains the contact point. */

holds(agent_constraint(AG, contact(AG, TRN)), do(terminate(A), S)):-
 holds(agent_constraint(AG, transaction_manager(AG, TRN)), S),
 holds(agent_constraint(AG, contact(AG, TRN)), S).

/* This group of axioms defines how an agent is assigned to
 or is discharged from the role of potenial order Identifier and-or transaction_manager.*/

%
/*----------------potenial_order _identifier----------------*/
/*Once an agent identifies a potenial order, s/he is and
 will be recognized as the potential order identifier.*/

holds(agent_constraint(AG, potential_order_identifier(AG, TRN)), do(terminate(A), S)):-
 holds(agent_constraint(AG, potential_order_identifier(AG, TRN)), S).

%
/*----------------transaction_manager----------------*/
/*--An agent becomes an transaction manager as the effect of the
activity assign_transaction_manager ----*/

holds(agent_constraint(AG, transaction_manager(AG, TRN)), do(terminate(A), S)):-
 A = assign_transaction_manager(AG, TRN).

/*----The process does not consider any reassignment for the transaction_manager; i.e
 Once the transaction manager is assigned, the role will remain with him/her.---*/

holds(agent_constraint(AG, transaction_manager(AG, TRN)), do(terminate(A), S)):-
 holds(agent_constraint(AG, transaction_manager(AG, TRN)), S).

/*---------This axiom defines the customer role --------------*/

holds(agent_constraint(AG, customer(CUST, TRN)), do(terminate(A), S)):-
 holds(agent_constraint(AG, customer(CUST,TRN)), S).

/*---This group of axiom defines as the effect of
180

Appendix B
 which activities the customer knows the contact point.
 ---------------*/

/* ----The customer knows an agent is customer contact point when
 1) the customer information is collected, or
 2) the transaction manager is introduced to the customer.
 ----------*/

holds(knows(contact(AG, TRN), CUST), do(terminate(A), S)):-
 A = collect_customer_data(TRN).

holds(knows(contact(AG, TRN), CUST), do(terminate(A), S)) :-
 A = introduce_transaction_manager_to_customer(AG, CUST, TRN).

holds(knows(contact(AG, TRN), CUST), do(terminate(A), S)) :-
 holds(knows(contact(AG, TRN),CUST), S).

/*___*/

/*-----This group of axioms specifies as the effect of what
 activities an agent is assigned, discarded or reassigned
 to perform one of the activities of
 the Skills Manager.
-----------*/

%
/* ----An agent is assigned to
 identify transaction manager candidates if s/he is
 a Skills Manager and s/he receives a request.
-----------*/

holds(agent_constraint(AG,
has_process_obligation(identify_transaction_manager_candidates(TRN),
 skills_manager, AG, TRN)), do(terminate(A), S)):-
 A = (assign_skills_manager_for_available_transaction_manager_candidates(AG0, AG,
TRN)),
 \+ AG= AG0.

%
/* ----An agent is assigned to identify transaction manager candidates
181

Appendix B
 if s/he a is skills manager and reassigned by another
 skills manager.
---------------*/
holds(agent_constraint(AG,
has_process_obligation(identify_transaction_manager_candidates(TRN),
 skills_manager, AG, TRN)), do(terminate(A), S)):-
 A = (reassign_skills_manager(AG0, AG, skills_manager , TRN)),
 \+ AG= AG0.

%
/* ----An agent has the obligation to
 identify transaction manager candidates if the agent is already assigned to do it and
 until the agent does not assign another agent to do it.
----------------*/

holds(agent_constraint(AG,
has_process_obligation(identify_transaction_manager_candidates(TRN),
 skills_manager, AG, TRN)), do(terminate(A), S)):-
 holds(agent_constraint(AG,
has_process_obligation(identify_transaction_manager_candidates(TRN),
 skills_manager, AG, TRN)), S),
 \+ (A = (reassign_skills_manager(AG, AG1, skills_manager, TRN))).

/*___*/
/*-----This group of axiom specifies as the effect of which
 activity the assignment of an agent to an activity is recorded.

 In general, as soon as an activity is assigned to an agent, the
 assignment is recorded on the Opportunity Record.
--------------*/

holds(recorded(has_process_obligation(identify_transaction_manager_candidates(TRN),
skills_manager, AG, TRN), rec(TRN)), do(terminate(A), S)):-
 A = (assign_skills_manager_for_available_transaction_manager_candidates(AG0, AG, TRN)).

holds(recorded(has_process_obligation(identify_transaction_manager_candidates(TRN),
skills_manager, AG, TRN), rec(TRN)), do(terminate(A), S)):-
 A = (reassign_skills_manager(AG0, AG, skills_manager, TRN)).

holds(recorded(has_process_obligation(identify_transaction_manager_candidates(TRN),
182

Appendix B
skills_manager, AG, TRN), rec(TRN)), do(terminate(A), S)):-
 holds(recorded(has_process_obligation(identify_transaction_manager_candidates(TRN),
 skills_manager, AG, TRN), rec(TRN)), S),
 \+ A = reassign_skills_manager(AG, AG1, skills_manager, TRN).

/*____________WRITE & READ ACCESS ________________*/
/*------This group of axioms spesify who has read and write access
 to the Opportunity Record. Owner and Identifier both have read access,
 Before that the transaction has a maanger, the identifier has the write
 access.
 Once the transaction has a manager , that manager has the write access.
 ----------------*/

 holds(has_access(read, AG, rec(TRN)), S):-
 holds(agent_constraint(AG, transaction_manager(AG, TRN)), S).

 holds(has_access(write, AG, rec(TRN)), S):-
 holds(agent_constraint(AG, transaction_manager(AG, TRN)), S).

 holds(has_access(read, AG, rec(TRN)), S):-
 holds(agent_constraint(AG, potential_order_identifier(AG, TRN)), S).

 holds(has_access(write, AG, rec(TRN)), S):-
 holds(agent_constraint(AG, potential_order_identifier(AG, TRN)), S),
 \+ holds(agent_constraint(AG, transaction_manager(AG1, TRN)), S).

/*-------CAN KNOW---------------*/
/* ----can_know/2 states that an agent
 can know the information if the information
 is documented on a record
 and s/he has read access to the record.
-----------*/

holds(can_know(F, AG), S) :-
 holds(recorded(F, rec(TRN)), S),
 holds(has_access(read, AG, rec(TRN)), S).
183

Appendix B
B.3.9 scenario.pl
%A scenario of PMP.
% Writer: Katayoun Atefi.
% Date: May 1997.

:- multifile holds/2.
:- dynamic holds/2.
:- multifile occursT/2.

/*SCENARIO for Case Manager*/

%------------------------------------
holds(agent_constraint(iden, potential_order_identifier(iden, trn)), s_0).
holds(agent_constraint(cust, customer(cust, trn)), s_0).

occursT(terminate(identify_potential_order(trn)), 1).
occursT(terminate(collect_customer_data(trn)), 2).
occursT(terminate(evaluate_customer_data(trn)), 3).
occursT(terminate(identify_transaction_manager_required_skills(trn)), 4).

occursT(terminate(assign_skills_manager_for_available_transaction_manager_candidates(iden,
skm1, trn)), 5).

occursT(terminate(reassign_skills_manager(skm1, skm2, skills_manager, trn)), 7).

occursT(terminate(identify_transaction_manager_candidates(trn)), 8).
occursT(terminate(verify_availablity_of_transaction_manager_candidates(trn)), 9).
occursT(terminate(select_transaction_manager(trn)), 10).

occursT(terminate(assign_transaction_manager(trm, trn)), 12).
occursT(terminate(introduce_transaction_manager_to_customer(trm, cust, trn)), 13).

occursT(terminate(collect_strategical_data(trn)), 14).

occursT(terminate(evaluate(trn)), 18).
184

Appendix B
B.3.10 driver1.pl
%driver of the scenario, (this is a utility program for Temporal Progection).
% Writer: Mike Gruninger.

:- unknown(_,fail).
:- dynamic holds/2.
:- multifile holds/2, holdsT/2, occursT/2.

holds(n(F), S) :- not(holds(F, S)).

holdsT(F,T) :- during(T, S), holds(F, S).

actual(s_0).
actual(do(A, S)) :- occurs(A, S).

occurs(A, S) :-
occursT(A,T),
start(do(A, S),T).

start(s_0, 0).

start(do(A, S), T) :-
occursT(A,T),
(occursT(Ap,Ts) ; Ts = 0),
Ts < T,
not(occursBetTp(Ts,T)),
start(S,Ts).

occursBetTp(Tp,T) :- occursBetT(E, Tp,T).

occursBetT(E, Tp,T) :- occursT(E, Tpp), Tp < Tpp, Tpp < T.

during(T, S) :-
start(S, T1),
start(do(A, S), T2),
T1 < T, T =< T2.

during(T,S) :-
start(S,T1),
T1 < T,
not(actualAft(S)).
185

Appendix B
actualAft(S) :- actual(do(A, S)).

not(P) :- P, !, fail; true.
186

Appendix B
B.3.11 subactivity_def.pl
%Definition of Subactivity.
:- multifile has_isubactivity/2.

:- multifile has_subactivity/2.

/*Definition of subactivity*/

has_isubactivity(P,S):-
has_subactivity(P,S).

has_isubactivity(P,S):-
has_subactivity(P,SS),
has_isubactivity(SS,S).
187

Appendix B
B.3.12 pmp_agents
%The potential values for assigned agents
/* This file has all the possible values for agents.*/

/*The domain of possible values of the newly assigned
 agents are the same as the domain of PMP current agents.
 Currently each PMP transaction is processed by three different roles.
 These roles are often performed by different agents.
To simplify the representation, we refer to these agents by their
organization roles, i.e.
potential order identifier, transaction manager and skills manager.

We did not assume a team relationship between
the potential order identifier, ‘transaction manger,
and skills manager. */

agent(skills_manager).
agent(potential_order_identifier).
188

Appendix B
B.3.13 thesis_Queries.txt
%For Thesis demo:
===
=============

Our FOL model for demo is loaded by the file:
/waterloo/atefi/3LAST/THESIS-CODE/thesis_ld_demo.pl

The file loads the following files:
:- ['model.pl'].

:- ['scenario.pl'].
:- [driver1].
:- [subactivity_def].
:- [library(strings)].
:- [library(sets)].
:- [library(lists)].
:- [library(basics)].
:- unknown(_,fail).

:- [main_def].
:- [dng].
:- [trc].
:- [chg].

===

file: /waterloo/atefi/3LAST/THESIS-CODE/dng.pl

Query: dangling_information(ACT, INF).

 ** ACT is the activity which provides the information
 but no activity uses it**
 ** INF is the information **

===
=============
file: /waterloo/atefi/3LAST/THESIS-CODE/trc.pl

189

Appendix B
** incluing three queries **
--

Question: Is there an activity that at its start,
 no agent is assigned as the contact point for the customer?

Query: no_contact(ACT).
 ** ACT is the one for which no contact exists**

--

Question: Is there an activity that at its start a contact
 exists but the customer does not know the contact?

Query: contact_unknown(ACT).
 ** ACT is the one for which contact exists but not known by the customer **

===
=============

Question: Is there any activity that when it occurs an agent has been assigned to perform an
activity
 but the agent who is the contact point for the customer cannot know about it?

Query: contact_loses_agent_trace(ACT, AG, ROLE, TRN_CON, ACTD, S).

 ** ACT is the one to which an agent is assigned**
 ** AG is the assigned agent to Activity**
 ** ROLE is the role of the assigned agent for that activity**
 ** TRN_CON is the agent who is the contact point for the customer**
 ** S refers to the situation in which activity ACTD occurs but the customer
 does not know about the assignment **

===
==================

file: /waterloo/atefi/ibm_demo/chg.pl
190

Appendix B

Question: Is there an agent constraint for which a change is defined?

Query: change_assignment(P, ASSGT, ACT).
 change_assignment(pmp(trn), ASSGT, ACT).
 ** P is the aggregate activity or a process **
 ** ASSGT is the agent constraint such as role**
 ** ACT is the activity which modifies the constraint**

Question: Is there an agent constraint for which a change is not defined?

Query: no_change_assignment(P, ASSGT).
 no_change_assignment(pmp(trn), ASSGT).
 ** P is the aggregate activity or a process **
 ** ASSGT is the agent constraint such as role**

===
==================

file: /waterloo/atefi/ibm_demo/stp.pl

Question: What are the agent assignments within process P that lead
 to P's minimum agent setup time?

Query: agent_assignment(P, LAC, G).
 agent_assignment(pmp(TRN), LAC, G).
 agent_assignment(select_and_assign_transaction_manager(TRN), LAC, G).
 ** P is the aggregate activity or a process **
 ** LAC is the list of activities**
 ** G is the list of assigned agents**
191

 References
References

Arend 93 Arend, M. (1993). Do You Really Need to “Reengineer”?, ABA

Banking Journal, Dec. 1993, pp. 46-50.
Booth 94 Booth, R. (1994). Simple as ABC, What on Earth is Business Pro-

cess Re-engineering?, Management Accounting, September 1994,

p. 18.
Booth 95 Booth, R. (1995). In the Market, Manufacture Engineer, Engineer-

ing Management, October 1995.
Brierley 93 Brierley, E. (1993) Workflow Today and Tomorrow, OIS Manage-

ment; Proceedings of the Conference, Editor: IIendnley, T. 1993,

pp. 216-221.
Business Process

Reengineering Tool

Repository 96

Business Process Reengineering Advisory Group, Enterprise Inte-

gration Laboratory, Department of Industrial Engineering, Univer-

sity of Toronto. (1996). Business Process Reengineering Tool

Repository, http://www.ie.utoronto.ca/EIL/tool/list.html.
Clegg et al. 96 Clegg, BT., Buckingham, AD. (1996). Factory Process Improve-

ment Using a Human centered Approach, Advances in Concurrent

Engineering, CE 96, presented at the Third ISPE International Con-

ference on Concurrent Engineering: Research and Applications,

1996, Toronto, Ontario, Canada, pp. 326-334
Davenport 93 Davenport, T.H. (1993). Process Innovation, Reengineering Work

through Information Technology, Harvard Business School Press,

Boston, Massachusetts.
 Davenport 96 Davenport, T.H. (1996). How a Business Fad Went Wrong, The

Globe and Mail, January 31, 1996.
141

 References
Drew 94 Drew, S. (1994). BBP in Financial Services; Factors for Success,

Long Range Planning Vol. 2, No. 5, 1994, pp. 25-41.
Earl 94 Earl, M. (1994). The New and Old of Business Process Redesign,

Journal of strategic Information Systems, Vol. 3. No. 1, 1994, pp. 5-

22.
Fitzgerald et al. 96 Fitzgerald, B., Murphy, C. (1996). Business Process Reengineer-

ing: Putting Theory into Practice, Infor Vol. 34, No. 1, 1996, pp. 3-

14.
Fox 92 Fox, M.S. (1992). “The TOVE Project: A Common-sense Model of

the Enterprise”, Industrial and Engineering Applications of Artifi-

cial Intelligence and Expert Systems, Lecture Notes in Artificial

Intelligence # 604, Editors: Belli, F., Radermacher, F.J. Berlin:

Springer-Verlag, 1992, pp. 25-34.
Fox 93 Fox, M.S. (1993). Issues in Enterprise Modelling, appeared in: Pro-

ceedings of the IEEE Conference on Systems, Man and Cybernetics,

1993.
Fox et al. 93 Fox, M.S., Gruninger, M., Zhan, Y. (1993). Enterprise Engineering

an Information Systems Perspective, Technical Report, Enterprise

Engineering Laboratory, University of Toronto, 1993.
Gilmore 95 Gilmore, J. (1995). How to Make Reengineering Truly Effective?,

Planning Review, May/June 1995.
Gonzalez & Dankel 93 Gonzalez, J., Dankel, D.D. (1993). The Engineering of Knowledge

Based Systems Theory and Practice, 1993, Prentice Hall Inc.
Ghani 96 Ghani, U.A. (1996). Holistic Reengineering, American Manage-

ment Association, Jan 1996, p 62.
Gruber 93 Gruber, T.R. (1993). Towards Principles for the Design of Ontolo-

gies Used for Knowledge Sharing, Technical Report, Knowledge

System Laboratory, Stanford University, 1993.
142

 References
Gruninger et al. 94 Gruninger, M., Fox, M.S. (1994). “An Activity Ontology for Enter-

prise Modelling”, Submitted to: Workshop on Enabling Technolo-

gies - Infrastructures for Collaborative Enterprises, West Virginia

University, 1994.
Gruninger et al. 95a Gruninger, M., Fox, M.S. (1995). “Methodology for the Design and

Evaluation of Ontologies”, Workshop on Basic Ontological Issues

in Knowledge Sharing, IJCAI-95, Montreal.
Gruninger et al. 95b Gruninger, M., Fox, M.S. (1995). The Logic of Enterprise Model-

ling, Re-engineering the Enterprise, Proceedings of the IFIP TC5/

WG5.7 Working Conference on Re-engineering the Enterprise, Edi-

tors: Brown, J., O’sullivan, D. Galway, Ireland, 1995, pp. 83-98
Gruninger 95a Gruninger, M. (1995). Characterization of Tools for Business Pro-

cess Reengineering, [Manuscript], 1995, The paper would appear in

Group documents of Business Process Reengineering Advisory

Group at: http://www.ie.utoronto.ca/EIL/tool/frmwrk/stage/def-

mod/defmod.html.
Gruninger 95b Gruninger, M. (1995). Designing Tools to Support Business Process

Reengineering, Enterprise Integration Laboratory, Department of

Industrial Engineering, University of Toronto, http://www.ie.utor-

onto.ca/EIL/grpdoc/bprtool.html#HDR3.
Gruninger 95c Gruninger, M. (1995). Org-theories, Enterprise Integration Labora-

tory, Department of Industrial Engineering, University of Toronto,

http://www.ie.utoronto.ca/EIL/papers/model.html.
Guha 93 Guha, K. (1993). Aimed to Provide a Standard Framework for

Large Scale Organizational Change. 1993, p. 16.
Hale 96 Hale, A.J., Cragg, P.B. (1996). Business Process Reengineering in

the Small Firm, Infor, Vol. 34, No. 1, 1996, pp. 15-27.
143

 References
Hammer 91 Hammer, M. (1990). Reengineering Work: Don’t Automate, Oblit-

erate, Harvard Business Review, July-August 1990, pp. 104-111.
Hammer et al. 93 Hammer, M., Champy, J. (1993). Reengineering the Corporation: A

manifesto for Business Revolution, Harper Business, New York.
Harrington 91 Harrington, H.J. (1991). Business Process Improvement, McGraw-

Hill, New York.
Hirshheim 86 Hirshheim, R.A. (1986). Perspectives and Views of the Office;

Alternative Approaches to Understand the office, appeared in Office

Systems, Editors: Verrijn-Stuart, A.S., Hirshheim, R.A. Elsevier

Science Publishers B.V. (North Holland) IFIP, 1986.
Kelleher 95 Kelleher, D. (1995). Business Programmes and Information Sys-

tems Methodologies, Info Systems J(1995)5, pp. 137-157
Khoong 96 Khoong, C.M. (1996). Culture-sensitive, Strategy-level Reengi-

neering, Infor Vol. 34, No. 1.
Kim et al. 94 Kim, H., Fox, M.S. (1994). Formal Models of Quality and ISO9000

Compliance: An Information Systems Approach, American Quality

Congress (AQC) Conference, American Society for Quality Con-

trol, Milwaukee WI: American Society for Quality Control, pp. 17-

23.
Klein 95 Klein, M.M. (1995). Requirements for Successful Reengineering,

Infor 33(4), 1995, pp. 225-233.
Klein 95 Klein, M.M. (1995). 10 Principles of Reengineering, Executive

Excellence, Feb. 1995, p. 20.
144

 References
Laakso et al. 95 Laakso, T., Hakamaki, J. (1995). Process Assessment and Simula-

tion Games- Methods and Software Supported Tools in Business

Process Reengineering, Re-engineering the Enterprise, Editors:

Brown, J., O’sullivan, D. Proceedings of the IFIP TC5/WG5.7

Working Conference on Re-engineering the Enterprise, Galway, Ire-

land, 1995, pp. 302-311.
Ligus 93 Ligus, R.G. (1993). Methods to Help Reengineer Your Company for

Improved Agility, Industrial Engineering, Jan. 93, Vol. 25, No. 1,

pp. 58-59.
Luger & Stubblefield 93 Luger, G.F., Stubblefield, W.A. (1993). Artificial Intelligence Struc-

tures and Strategies for Complex Problem Solving, 1993, Second

Edition, The Bejamin/Cummings Publishing Company Inc.
Miller 95 Miller, G. (1995). Reengineering: Forty u$eful hints, Hospital

Material Management Quarterly, 1995, Vol. 17, No. 2, pp. 37-46.
Mintzeburg 79 Mintzeburg, M. (1979). The Structuring of Organizations (Engle-

wood Cliffs, N.J.: Prentice-Hall.
Shoham 94 Shoham, Y. (1994). Artificial Intelligence Techniques in Prolog,

1994, Morgan Kaufmann Publishers, Inc.San Francisco, California,

pp. 143-145.
Simons 95 Simons, M.L. (1995). Human side of Reengineering Executive

Excellence, Feb. 1995, p. 19.
Slagle 71 Slagle, J.R. (1971). Artificial Intelligence: The Heuristic Program-

ming Approach. New York, NY: McGraw-Hill.
Smith 1850 Smith, A. (1850). The Wealth of Nations, Edinburgh: Adam and

Charles Black.
Spurr et al. 94 Spurr, K., Layzell, P. (1994). Software Assisted for Business Re-

engineering, Editors: Spurr, K., Layzell, P., Jennison, L., Richards,

N. John Wiley & Sons, 1994.
145

 References
Sterling et al. 86 Sterling, L., Shapiro, E. (1986). The Art of Prolog, MIT Press, Cam-

bridge, MA 1986.
Strassman 93 Strassman, P. (1993). Rebottling Old Medicine: Origins and Rele-

vance of Reengineering, American Programmer, Vol. 6, No. 11, pp.

3-9.
Tham et al. 94 Tham, D., Fox, M.S., Gruninger, M. (1994). A Cost Ontology for

Enterprise Modelling Third Workshop on Enabling Technologies-

Infrastructures Collaborative Enterprises, IEEE Computer Society

Press, pp. 197-210.
Talwar 93 Talwar, R. (1993). Business Re-engineering-a Strategy-driven

Approach, Long Range Planning, Vol. 26, No. 6, 1993, pp. 22 -40.
Venkatraman 94 Venkatraman, N. (1994). IT-Enabled Business Transformation:

From Automation to Business Scope Redefinition, Sloan Manage-

ment Review, winter 1994, pp. 73-87.
Vredde et al. 96 Vredde, G.J., Eijck, D.T.T., Sol, H.G. (1996). Dynamic Modelling

for Re-engineering Organizations, Infor Vol. 34, No. 1, 1996, pp.

28-42.
Wagner et al. 94 S. Wagner, J. Liu, P. Jain (from Andersen Consulting), (1994). Dis-

continuous Transformations (DT); Transformational Approach to

Business Process Redesign, appeared in AAAI BPR Workshop,

1994.
Weston et al. 95 Weston, R.H., Gilders, P.J. (1995). Enterprise Engineering Methods

which Facilitate Simulation, Emulation, and Enactment via Formal

Models, Modelling Methodologies for Enterprise Integration, Pro-

ceedings of the IFIP TC5 working conference on models and meth-

odologies for enterprise integration, Editors: Bernus, P., Nemes, L.

1995, Queensland Australia, November 1995, pp. 218-233.
146

 References
Weston 96 Weston, R.H. (1996). Model Driven Configuration of Manufactur-

ing Systems in Support of the Dynamic, Virtual Enterprise,

Advances in Concurrent Engineering, CE 96, presented at The

Third ISPE International Conference on Concurrent Engineering:

Research and Applications, Toronto, Ontario, Canada, pp. 425-438.
Yu 94 Yu, E.J. (1994). Modelling Strategies relationships for Process

Reengineering, Thesis, 1994.
Yu et al. 93 Yu, E.S., Mylopoulos, J. (1993). An Actor Dependency Model of

Organizational Work - With Application to Business Process Engi-

neering, - Proceeding Conf. on Organizational Computing Systems

(COOCS 93), Nov. 1-4, 19993, Milpitas, California, USA, pp. 258-

268.
147

 References
Bibliography

Baiman 82 Baiman, S. Agency Research in Management Accounting, A Survey

in Modern Accounting Research: History, Survey and Guide, Mat-

tesich, R. 1983, pp. 251-292.

Reprinted in The Journal of accounting Literature, 1 spring 1982,

pp. 154-213.
Blackwell 53 Blackwell, D. (1953). Equivalent Comparisons of Experiments,

Annals of Mathematical Statistics, 1953, pp. 267-272.
Brilouin 62 Brilouin, L. (1962). Science and Information Theory, 1962.
Druker 88 Drucker, P.F. (1988). The Coming Of The New Organization, Har-

vard Business Review, January-February 1988, pp. 45-53.
Druker 91 Drucker, P.F. (1991). The New Productivity Challenge, Harvard

Business Review, November-December 1991, pp. 69-79.
Feltham 83 Feltham, G.A. (1983). Financial Accounting Research: Contribu-

tions of Information Economics and Agency Theory, in Modern

Accounting Research: History, survey and Guide, Richard Mat-

tesich, 1983, pp. 179-207.
Hyvarinen 68 Hyvarinen, L.P. (1968). Information Theory for Systems Engineers,

1968.
Malone et al. 93 Malone, T.W., Crowston, K. (1993). Working Paper #141 Center for

Coordination Science Massachusetts, Institute of Technology May

199, In Proceedings of the 2nd IEEE Workshop on Enabling Tech-

nologies Infrastructure for Collaborative Enterprises, Morgantown,

WV, April 1993.
148

 References
Marschak and Radner

72

Marschak, J., Radner, R. (1972). Economic Theory of Teams, New

Haven and London, Yale University Press, 1972.
Nicoletti 96 Nicoletti, S., Nicolo, F. (1996). A Concurrent Engineering Decision

Model: Management of the Project Activities Information Flows,

CE 96, presented at the Third ISPE international conference on con-

current engineering: research and applications, Toronto, Ontario,

Canada, pp. 256-263.
Simon 81 Simon, H. (1981). The Sciences of the Artificial, 1981, Second edi-

tion, Cambridge MIT press.
149

 References
150

	Formal models of business process reengineering for design and design validation
	02-Acknowledgments.pdf
	Acknowledgments

	03-Abstract.pdf
	Abstract

	05-ListOfTables.pdf
	List of Tables

	06-ListOfFigures.pdf
	List of Figures

	08-ChapterOneIntroduction.pdf
	Chapter 1 Introduction
	1. We develop an analytical model that highlights the various components of agent setup time. The model is used to describe the effects of different agent assignments and manufacturing process strategies on agent setup time.
	2. We create a logical model that defines various “agent assignment” design strategies that improve agent setup time. A reasoning system can use the model to actually draw design alternatives that lead to minimal agent setup time.
	3. We develop a logical model that can be employed to find the problems of an existing process design with respect to information flow, case management and agent constraints.
	4. We incorporate the logical models into a software tool and use the tool to analyze a hypothetical process. The tool assists the designer in evaluating the process design.
	1. We create an analytical model that highlights the components of agent setup time.
	2. We develop a First Order Logic model of the “agent/activity design strategies”, (see chapter 4).
	3. We develop a First Order Logic model that allows us to validate a process design with respect to information flow, case manag...
	4. We integrate all the logical models into a software tool, which is called Process Integration advisor (see chapter 6). The tool illustrates the practical use of our work in enterprise design.

	09-ChapterTwo-PartOne.pdf
	Chapter 2 - Part 1 Review of process design heuristics
	2.1 Introduction
	1. IT enabling roles heuristics. These heuristics describe various ways in which information technology can enable or constrain ...
	2. Process and scope selection heuristics. The heuristics of this group describe various criteria to choose a process and its scope for reengineering. Some of these criteria are strategic relevancy, process health and manageability [Davenport 93].
	3. Organizational structure, systems and behavior heuristics. These heuristics describe the employees educational strategies, ma...
	4. Implementation heuristics. The intent of these heuristics is to prevent implementation pitfalls and to manage the required ch...
	5. Process design heuristics. There is no “one best way” [Mintzeburg 79] to design a process. Various factors such as business s...
	FIGURE 1. The Components of BPR

	2.2 Reengineering the Corporation
	2.2.1 Several jobs are combined into one
	2.2.2 Hybrid centralized/decentralized operations are prevalent
	2.2.3 Work is performed where it makes the most sense
	2.2.4 The steps in the process are performed in a natural order
	2.2.5 Reconciliation is minimized
	2.2.6 Processes have multiple versions
	2.2.7 A Case Manager provides a single point of contact
	2.2.8 Workers make decisions
	2.2.9 Checks and controls are reduced

	2.3 Process Innovation
	2.3.1 Order management processes
	2.3.1.1 Case manager
	2.3.1.2 Order segmentation
	2.3.1.3 Customer participation
	2.3.1.4 Real-time process execution
	2.3.1.5 Parallel processes
	2.3.1.6 Process partnerships

	2.3.2 Other process types
	2.3.2.1 Marketing processes
	1. Rapid evaluation of how advertising and promotion impact sales. This is possible by using point-of-sale information gathering technologies.
	2. Understanding and taking advantages of buyer behavior, e.g. individualized magazine publishing.
	3. Identification of exceptions to normal patterns in data by employing expert logic.
	4. Close partnerships with advertising agencies, data collection and database marketing firms. This promotes faster flows of mor...

	2.3.2.2 Service processes
	1. Providing fast service by using computer programs; e.g. insurance agents with laptop computer can deliver real-time quotes and hotel customers can checkin and checkout without visiting the registration desk. Similar to 2.2.2 and 2.3.1.3.
	2. Individualization treatment of customers by having rapid access to the customer and order information before or just after the customer calls to place an order, asks for information, and so forth.
	3. Controlling or at least monitoring of the factors that affect the service quality, e.g. Federal Express predicts incoming pac...
	4. Separating the company’s performance from its monitoring and control. For instance, service requests are received at central ...
	5. Performing part of the process during the move towards the customer’s site.

	2.3.2.3 Research processes
	1. Clear and measurable project objectives.
	2. Rigorous communication throughout the organization and using a common vocabulary about research projects and their status.
	3. Close ties with firm’s strategic planning process.
	4. Project management approach to manage the timing and duration of activities for which specialized resources will be needed.
	5. Formal cross functional meetings.
	6. Using computers in the field, scientists conduct research design and analysis in the field to reduce the number of failed experiments linked to local conditions.

	2.3.2.4 Engineering and design processes
	1. Concurrent engineering or parallel process flow to reduce cycle time. Similar to 2.2.4.
	2. Facilitating design for manufacturability and cost by: 1) use of computer programs, 2) communication through cross functional...
	3. Relevant process interfaces between engineering, sales and manufacturing. The examples are:
	4. Reducing the number of changes in product development cycle.

	2.3.2.5 Manufacturing processes
	1. Switching from batch processes to a cell-based work flow.
	2. Saving more time and money in manufacturing by use of equipment maintenance expert systems which diagnose a complex equipment malfunction and recommend corrective action.
	3. Flexible production tools.
	4. Greater functional integration between manufacturing, sales, marketing, engineering, and logistics.
	5. Involve the provision of a higher level of service such as consulting, real-time commitments and arranging optimum financing for the customer.
	6. Use of MRP and MRP II for production control and material management and structuring work so that teams build entire products rather than simple components. These strategies did not turn out to be effective in practice.
	7. Better interfaces between manufacturing and engineering, manufacturing and logistics, manufacturing and sales. For instance, using information from sales to drive manufacturing.

	2.3.2.6 Logistical processes
	1. Rich flow of communication and clear understanding among the supply chain agents.
	2. JIT practices.
	3. Having fewer suppliers enables easier communication and management of supply chain processes.
	4. Elimination of warehousing and finished goods inventory management by creating finished goods to fill customer orders and shipping completed goods to customers.
	5. Parallel processing of ancillary activities, e.g. site preparation and credit checking, in the supply chain process. Similar to 2.3.1.5.
	6. Close relationships with third parties. The examples are:

	2.4 Don’t Automate, Obliterate
	1. Organize around outcomes, not tasks.
	2. Have those who use the output of process perform the process.
	3. Subsume information-processing work into the real work that produces the information.
	4. Treat geographically dispersed resources as though they were centralized.
	5. Link parallel activities instead of integrating their results.
	6. Put the decision point where the work is performed, and build control into the process.
	7. Capture information once and at the source.

	2.5 Business Process Improvement
	1. Bureaucracy elimination. Minimizing delays, red tape, documentation, reviews and approval.
	2. Value added assessment. The recommendations to eliminate non-value added are:
	3. Simplification; i.e. less tasks, stages and interdependencies. Simplification can be achieved by:
	4. Process cycle time reduction.
	5. Error proofing. Make it difficult to commit an error. For instance, use a computer program that checks spelling.
	6. Upgrading. Upgrade the process equipment and office layout and people skills.
	7. Simple language.
	8. Forms. Self explanatory forms, non-redundant information and well defined abbreviations.
	9. Standardization. Adequate documentation is required to standardize the process.
	10. Supplier partnerships.
	11. Big picture improvement. So far the focus was on gradual change. In order to bring a substantial change, the process regardless of existing organizational constraint should be redefined.
	12. Automation and/or mechanization. Using information technology to automate the process.

	2.6 Other authors
	2.6.1 Methods to Help Reengineer Your Company for Improved Agility [Ligus 93]
	1. Reduce the physical distance between supply points, production, assembly and the customer for the core products. Similar to 2.5- step 4- bullet 5.
	2. Integrate processes and reduce setups using a zero based goal. Streamline the physical flow within the factory. Physically co...
	3. Implement physical changes to place facilities close to sources of supply.
	4. Form partnerships with fewer suppliers such that components can be delivered to satisfy real demand. Similar to 2.3.2.6- step 3 and step 6.
	5. Create short, direct lines of distribution to make it very easy for customers to place an order and receive fast delivery.
	6. Streamline and electronically link the information chain so that flow is direct-without interruptions and delays. Reduce business cycle times to the time it actually takes to efficiently process information.
	7. Induce fast communications and decisions throughout the organization by physically clustering functions needed to complete business cycles quickly. Tear down physical walls that stand in the way of communications.
	8. Recompose operational organizations with cells that address logical separations of business cycles, containing multi skilled ...

	2.6.2 Business Re-engineering; a Strategy-driven Approach [Talwar 93]
	1. Eliminating unnecessary activities and reducing the number of delays, e.g reviews, authorizations, inspections and hand-offs between departments. Similar to 2.5.
	2. Minimizing the delays between processing stages by automating workflows.
	3. Increasing flexibility by creating a multi-skilled workforce. Similar to 2.6.1- step 8.
	4. Reducing duplication of effort and investment by forming stronger partnerships with customers and suppliers, sharing more key information and undertaking joint development activities. Similar to 2.3.1.6 and 2.3.2.6- step 6.
	5. Improving internal communications by bringing different organizational functions together to speedup product and service development. Similar to 2.6.1- step 7.
	6. Outsourcing activities which add no value but divert management time and energy.

	2.6.3 Simple as ABC, What on Earth is Business Process Reengineering? [Booth 94] [Booth 95]
	1. Integrate to achieve lead time compression by:
	2. Plan for concurrent marketing, manufacturing process and product design process so that a product which meets the needs of a ...
	3. Remove the fragmentation in the production process. Then remove the managerial hierarchy which was in place to manage the fragmented process. Similar to 2.2.1 and 2.2.8.
	4. Make information accessible to staff so that they can perform their work independent of referral upwards to middle management. Similar to 2.2.2 and 2.2.8.
	5. Plan for designed-in quality rather than inspected-in quality. This is achievable by having concurrency between product design and manufacturing process.
	6. Reorganize so that one department or individual is responsible for the whole process to minimize departmental handovers and to ensure a clear accountability. Similar to 2.2.1.
	7. Arrange concurrent teams or cells to provide quality and timeliness. Basic scheduling and quality control is handled within the team. Similar to 2.6.1- step 8.
	8. Have a modular and reusable product design to allow customized features to be contained in a single part of the design.
	9. Have a product structure that allows variety to be introduced at the end of the manufacturing process as opposed to the beginning.
	10. Have non fragmented staff roles. Similar to 2.2.1.

	2.6.4 Useful hints [Miller 95]
	1. Eliminate bottle necks by speeding up the slowest activity in the process.
	2. Reduce the number of steps, complexity levels, and people. Similar to 2.5.
	3. Reduce defects to prevent rework.
	4. Increase flexibility by envisioning the parameters of possible change when designing the process, using adaptable people and designing processes to accommodate future change.
	5. Eliminate non-value added activities, assets, and costs. Similar to 2.5.
	6. Decentralize unless there are compelling reasons such as economies of scale and critical resources to do otherwise. If you centralize make sure this does not comprise service, quality or flexibility.
	7. Streamline, simplify, automate and integrate. Similar to 2.5.
	8. Use cellular and self-directed work teams to handle an entire process. Similar to 2.2.1.

	2.6.5 Principles of Reengineering [Klein 95]
	1. Rethink the boundaries between your processes and those of your suppliers and customers and integrate them with their processes. Similar to 2.3.1.3 and 2.3.2.6- step 6.
	2. Consider outsourcing a process if your costs are higher than that of an outsource vendor and if you add no more value than the outsource vendor would add to that process. Similar to 2.6.3- step 6.
	3. Give more responsibility to the front line people and increase flexibility. This approach often leads to decentralization. Ho...
	4. Consider segmenting process inputs and creating parallel process flows to simplify the process (similar to 2.2.6), or create entirely new products or services.
	5. Resequence activities where possible to eliminate the need for separate subprocesses. For instance, Disney provided automated kiosks at which customers could prepay. This reduces the time spent in queues. Similar to 2.2.2.
	6. Simplify interfaces and information flows. For instance, Loews Co. allows its customers to find out what movies are playing a...

	2.6.6 How to Make Reengineering Truly Effective? [Gilmore 95]
	1. Design for Flexibility. Rather than designing a process in considerable detail, build it in away that it can change to meet the customer needs over time.

	2.7 Conclusion
	2.7.1 Heuristics; their positive aspects and limitations
	1. Heuristics are ambiguous.
	2. Heuristics are unreliable.

	2.7.2 Emerging themes from the reviewed heuristics
	2.7.2.1 Agent assignments; the focus of chapters 3 and 4 of this thesis
	1. assigning an individual (with the help of computer program) or a team to perform a set of activities, or
	2. shifting the responsibility of performing an activity from an individual or a group to another.
	1. Breaking the process into different versions so that each version can be performed either by an individual or by a team.
	2. At the beginning of a multi-version process, there should be a step that assigns each received transaction to one of the process versions.

	2.7.2.2 Case manager, the focus of section 5.2
	2.7.2.3 Concurrency in information intensive processes

	10-ChapterTwo-PartTwo.pdf
	Chapter 2- Part 2 Tools
	2.8 Classification
	2.9 Discontinuous Transformations (DT)
	2.9.1 Review
	1. A subactivity which is performed by internal operator should be assigned to its initiator and if this is not possible to its recipient.
	2. All the successive subactivities of the same type (i.e. task or decision) should be aggregated into one activity. If one of t...
	3. If two successive task and decision subactivities act on the same set of work objects then they should be aggregated.
	4. A master coordinator should be assigned to the process.
	5. The subactivities that have no or a small number of work objects in common, should be performed concurrently.

	2.10 Conclusion

	11-ChapterThree.pdf
	Chapter 3 Analytical model of agent setup time
	3.1 Agent setup time model
	(EQ 1)
	(EQ 2)
	(EQ 3)
	(EQ 4)

	3.2 Manufacturing process strategies
	(EQ 5)
	(EQ 6)
	(EQ 7)
	(EQ 8)
	(EQ 9)
	1. Batch like orders
	2. Transfer line
	3. Common components
	4. Standard interfaces
	5. Computer controlled equipment
	3.2.1 Batch like orders
	(EQ 10)

	3.2.2 Transfer line
	(EQ 11)

	3.2.3 Common components
	(EQ 12)

	3.2.4 Standard interfaces
	(EQ 13)

	3.2.5 Computer controlled equipment
	(EQ 14)
	(EQ 15)
	(EQ 16)
	(EQ 17)
	(EQ 18)

	3.3 Agent/activity design strategies
	3.3.1 Assign one agent to perform activities Aci and Acj
	(EQ 19)
	(EQ 20)
	(EQ 21)
	(EQ 22)
	(EQ 23)
	(EQ 24)
	(EQ 25)

	3.3.2 Assign an agent with the help of a computer program to perform activities Aci and Acj
	(EQ 26)
	(EQ 27)
	(EQ 28)
	(EQ 29)

	3.3.3 Assign a team to perform activities Aci and Acj
	(EQ 30)
	(EQ 31)
	(EQ 32)
	(EQ 33)
	3.3.3.1 Assign one agent to perform activities Acj-1 and Acj-2
	(EQ 34)

	3.3.3.2 Agent/activity design strategies and the issue of assigned agent

	3.4 Conclusion and summary
	TABLE 1. Strategies and their effects on agent setup time

	12-ChapterFour.pdf
	Chapter 4 Formal model of agent/activity design strategies
	4.1 Formalization methodology
	1. Motivating scenario
	2. Informal competency questions
	3. Terminology
	4. Axioms
	5. Formal competency questions

	4.2 TOVE project
	4.3 Constructing the logical model of agent/activity design strategies
	4.3.1 Motivating scenario
	1. assigning one agent (with the help of computer) to perform the activity which produces the information and the one which uses that information.
	2. assigning one team of agents to perform the activity which produces the information and the one which uses that information.
	3. assigning one agent to perform two activities which use the same information.
	FIGURE 2. Agi and Agj are the same.
	FIGURE 3. Agi and Agj are a team.
	FIGURE 4. Another subactivity such as Ack uses this information and Agk who performs Ack is the same as Agj.

	4.3.2 Informal competency question
	4.3.2.1 Expressing the question, using FOL
	1. Any sentence which expresses how agents should be assigned to activities is an "agent assignment constraint". In section 4.5,...
	2. Obviously, our agent/activity design strategies are also a subclass of "agent assignment constraint", for they describe a spe...

	4.3.2.2 Tailoring the question, with respect to TOVE’s definition of activity
	4.3.2.3 Consistent definitions at various levels of detail
	1. preliminary design
	2. sending and receiving the preliminary design
	3. studying the preliminary design
	4. detailed design

	4.3.3 Terminology
	TABLE 2. Terminology for agent/activity design strategies

	4.3.4 Axioms
	1. What is the “base activity”?
	(" bs-a) base-activity(bs-a) … ("s1,s2) (Ø$ sub-a) Do(bs-a,s1,s2)s9 Ÿ subactivity(sub-a, bs- a) Ÿ agent-setup -activitys3(sub-a). (EQ 35)
	2. What is the “new activity”?
	("bs-a, new-a) new-activity(new-a, bs-a) º ("s1,s2,s3,s4, sub-a,sub-aa) base-activity(bs-a) Ÿ (subactivity(sub-a, bs-a) … subactivity(sub-a, new-a)) Ÿ (subactivity(sub-aa, new-a) … subactivity(sub-aa, bs-a)) Ÿ ($ag) Doa(new-a,s3,s4,ag)s9 (EQ 36)

	3. What is the “agent setup activity”?
	("set-a) agent-setup-activity(set-a) º ("act, inf) knowledge-precondition(act,inf) Ÿ achieve(set-a,act,inf). (EQ 37)
	("act,inf) knowledge-precondition(act,inf) º (" s1, s2,ag) Doa(act,s1,s2,ag)s9 … Ks(ag,inf,s1)s7 (EQ 38)
	(" set-a,act,inf) achieve(set-a,act,inf) º ("s3,s4,ag) ØKs(ag,inf,s3)s7 Ÿ Do(set-a,s3,s4)s9 … Ks(ag,inf,s4)s7. (EQ 39)

	4. What is “AAC”?
	("a,ag) AAC(a,ag) º ("a1,a2,ag1,ag2,inf,s1,s2,s11,s12,s21,s22,s31,s32) Doa(a,s1,s2,ag) Ÿ subactivity(a1, a) Ÿ subactivity(a2,a) ...
	("ag1,ag2) AAC1(ag1,ag2) º (ag1= ag2). (EQ 41)
	("ag1,ag2) AAC2(ag1,ag2) º team(ag1, ag2,g). (EQ 42)
	("a,a2, ag2,inf,a3,ag3) AAC3(a,a2, ag2,a3,ag3,inf) º subactivity(a3,a) ŸØ(a3 = a2) Ÿ ("s31,s32) Doa(a3,s31,s32,ag3) … uses-informations5(a3,inf,ag3) Ÿ (ag2= ag3). (EQ 43)
	("a,ag,ag1,a1,s1,s2,s3,s4) Doa(a,s1,s2,ag) Ÿ subactivity(a1,a) Ÿ Doa(a1,s3,s4,ag1) … (ag1 =ag) ⁄ (member(ag1,ag)). (EQ 44)

	5. What is the definition of “uses-information”?
	("a,inf,ag) uses-information(a,inf,ag) º (" s1,s2) Doa(a,s1,s2,ag)s9 … Ks(ag,inf,s1)s7 (EQ 45)

	6. What is the definition of “produces information”?
	("a, inf,ag) produces-information(a, inf,ag) º ("s1, s2) ØKs(ag,inf,s1)s7 Ÿ Doa(a,s1,s2,ag)s9 … Kss7(ag,inf,s2). (EQ 46)

	7. What is “Ks”?
	8. What is a “team”?
	("ag1, ag2,g) team(ag1,ag2,g) º ("s) holds(agent-constraint(ag1, goal(g,ag1)),s) Ÿ holds(agent-constraint(ag2, goal(g,ag2)),s). (EQ 47)

	9. What is the definition of “Do” and “Doa”?

	4.3.5 Formal competency question
	Theories |= ($ new-a,ag) base-activity(A) Ÿ new-activity(new-a, A) Ÿ AAC(new-a,ag). (EQ 48)

	4.4 Extending the model
	1. We identify the problem that our extended model should solve as:
	2. We identify the required terms to state the competency question.
	3. Using the above terms and also employing the terms Doa and subactivity (see Table 2 on page 74), we define the “agents’ capability constraint”, as:
	("a,ag) ACPC(a,ag) º ("a1,ag1,f1,s1,s2,s11,s12) (Doa(a,s1,s2,ag) Ÿ subactivity(a1, a) Ÿ Doa(a1,s11,s12,ag1) Ÿ required-skill(a1,f1)) … has-skill(ag1,f1). (EQ 49)

	4. And finally, the formal competency question of the extended model will be:
	Theories |= ($ new-a,ag) base-activity(A) Ÿ new-activity(new-a, A) Ÿ ACC(new-a,ag) Ÿ ACPC(new-a,ag). (EQ 50)

	4.5 Generalization of the competency question
	("s1,s2,ag,t) (Doa(evaluate(t),s1,s2,ag) Ÿ transcript(t)) … ag = Jane-Doe. (EQ 51)
	Theories |= ($ new-a,ag) base-activity(A) Ÿ new-activity(new-a, A) Ÿ j(new-a,ag). (EQ 52)

	4.6 Summary

	13-ChapterFive.pdf
	Chapter 5 Design validation model
	5.1 Dangling information
	5.1.1 Motivating scenario and informal competency question
	5.1.2 Terminology and axioms
	TABLE 3. Terminology for the “dangling information”

	5.1.3 Formal competency question
	Theories |= ($ a1,inf,ag1) produces-information(a1, inf,ag1) Ÿ Ø ($ a2,ag2) uses- information(a2,inf,ag2). (EQ 53)

	5.2 Case management
	5.2.1 Motivating scenario
	1. John who was the “case manger” of this process, resigned, and a new case manager is not assigned yet. This means Jill, the cu...
	2. Consider in the above scenario, Joe is assigned as the new case manager but Jill the customer has not been informed yet. From...
	3. Jill finally understood Joe is the current “case manager” for her transaction. She calls him to know the current status of he...
	1. Is there a time when no agent fills the “case manager” role?
	2. Is there a time when an agent fills the “case manager” role but this agent is not known by the customer?
	3. Is there is a time when an agent should perform a subactivity of the process and the “case manager” of this process does not know it?

	5.2.2 Informal competency questions
	5.2.2.1 Temporal projection
	5.2.2.2 Agent constraints
	1. Organizational role
	2. An agent should perform a subactivity
	3. Customer
	4. Agent constraint

	5.2.2.3 Last version of informal competency questions
	1. Is there a time point (during the performance of A) when the customer exists but no agent is assigned to the “case manager” role?
	2. Is there a time point (during the performance of A) when an agent has the “case manager” role but this agent is not known by the customer?
	3. Is there a time point when an agent has the obligation to perform one of the A’s subactivities but the “case manager” does not know it?

	5.2.3 Terminology
	TABLE 4. Terminology for the “case management”

	5.2.4 Axioms
	1. What is the definition of the “case manager”?
	("agc,a,cus,f,t1) holdsT(agent-constraint(agc,case-manager(agc,a)),t1) º ((holdsT(agent- constraint(cus,process-customer(cus,a)),t1) Ÿ occursT(ask(f,agc,cus),t1)) … ($t) occursT(answer(f,cus,agc),t) Ÿ t => t1). (EQ 54)
	2. What are the definitions of a “role”, and a “process customer”?
	3. What are the assumptions?

	("a) ($cust,t) holdsT(agent-constraint(cust,process-customer(cust,a)),t). (EQ 55)
	("a) ($agc,t) holdsT(agent-constraint(agc,case-manager(agc,a)),t). (EQ 56)
	("sub-a,a,ag,t) subactivity(sub-a,a) Ÿ (change-assignment-activity(a,ag) ⁄ inf- producing-activity(a,ag)) … occursT(teminate(sub-a),t) º (sub-a = A1 Ÿ t = T1) ⁄... ⁄ (sub-a = An Ÿ t = Tn). (EQ 57)
	("a,ag) change-assignment-activity(a,ag) º ("ac,c,r,s) (Øholds(agent-constraint(ag,c), s) Ÿ holds(agent-constraint(ag,c), do(ter...
	("a,ag,s) inf-producing-activity(a,ag) º Ks(ag,inf,do(terminate(a),s)). (EQ 59)

	5.2.5 Formal competency questions
	1. Is there a time point (during the performance of A) when the customer exists but no agent is assigned to the “case manager” role?
	Theories Ÿ CM Ÿ HC Ÿ SO |= ($ sub-a,agc,cus,t) subactivity(sub-a,A) Ÿ occursT(terminate(sub-a), t) Ÿ holdsT(agent-constraint(cus,process-customer(cus,A)),t) Ÿ ØholdsT(agent-constraint(agc,case-manager(agc, A)), t). (EQ 60)
	2. Is there a time point (during the performance of A) when an agent has the “case manager” role but this agent is not known by the customer?

	Theories Ÿ CM Ÿ HC Ÿ SO |= ($ sub-a,agc,cus,t) subactivity(sub-a,A) Ÿ occursT(terminate(sub-a), t) Ÿ holdsT(agent-constraint(agc...
	3. Is there a time point when an agent has the obligation to perform one of the A’s subactivities but the “case manager” does not know it?

	Theories Ÿ CM Ÿ HC Ÿ SO |= ($ sub-a,ag,agc,cus,t) subactivity(sub-a,A) Ÿ holdsT(agent- constraint(ag,process-obligation(ag,sub-a...

	5.3 Changeable agent assignments
	5.3.1 Motivating scenario, informal and formal competency question
	Theories |= ($ ag,c,r,ac,s) holds(agent-constraint(ag,c),s) Ÿ ($ sub-1,s-1) subactivity(sub- 1,A) Ÿ Øholds(agent-constraint(ag,c), do(terminate(sub-1), s-1) Ÿ (c = role(ag,r) ⁄ c = process-obligaion(ag,ac)). (EQ 63)

	5.4 Summary
	TABLE 5. Summary of the design validation model

	14-ChapterSix.pdf
	Chapter 6 Incorporating FOL models into a software tool
	6.1 Implementation of agent/activity design strategies
	6.1.1 Implementation technique
	1. What is the constraint that should be satisfied?
	2. What is the variable set (i.e. the set of variables to which the generator should assign value) that characterizes any new activity?
	3. What is the domain (possible values) of each variable?
	1. What is the constraint that should be satisfied?
	2. What is the variable set (i.e. the set of variables to which the generator should assign value) that characterizes any new activity?
	3. What is the domain (possible values) of each variable?

	6.1.2 Algorithm
	1. Given a base activity P, establish the set LAC with the following properties:
	2. Let LAG denote the domain set; i.e. the set which contains all the possible values for the agents of those subactivities which either use or produce information. Generate an instantiated list (G) in the following way:
	3. Test if the instantiated G satisfies the constraint. If yes, G is a solution; otherwise backtrack to generate another G.
	4. Check to see if all the possible combinations have been generated. If yes, terminate. If no, backtrack to step 2 to generate another combination. Prolog performs this step automatically.

	6.1.3 Prolog program

	6.2 Pre-order Management Process (PMP)
	6.2.1 An overview of PMP
	FIGURE 5. An overview of PMP subactivities

	6.2.2 PMP subactivities
	1. Identify potential order
	2. Collect and evaluate customer data
	3. Select and assign “transaction manager”
	4. Evaluate, drop or select the pre-order
	6.2.2.1 Identify potential order
	6.2.2.2 Collect and evaluate customer data
	TABLE 6. The possible outcomes and the activity enabled by each outcome

	6.2.2.3 Select and assign “transaction manager”
	1. If the “skills manager” (for any reason) can not identify available “transaction manager” candidates, s/he documents the reason(s) and sends the request to another “skills manager”.
	2. S/he uses the databases, containing the HC’s employees skills, to identify those employees who have the required skills to be...

	6.2.2.4 Evaluate, drop or select the pre-order

	6.3 The Process Integration advisor
	1. Is there a piece of dangling information in this process?
	2. Is there a time when no “case manager” exists for this process?
	3. Is there a time when a “case manager” exists but s/he is unknown by the customer?
	4. Is there a time when an agent should perform an activity in the process and the case manager of the process does not know about it?
	5. Is there any activity which can change the assignment of an agent to a role or to a subactivity of this process?
	6. What is the redesigned process(es) which satisfies the “agent/activity design strategies”, leading to minimal agent setup time?

	6.4 Analysis of PMP
	6.4.1 Summary of results
	TABLE 7. Applying the Process Integration advisor to PMP; Summary of results

	6.4.2 Results
	6.4.2.1 Dangling information
	P1. The information obtained by the “potential order identifier” through the activity of “contact product manager” is not used by any other activity.
	R1. The contribution of the information produced by the activity “contact product manager” to the other activities should be defined.
	E1. In the “Collect and evaluate customer data”, “potential order identifier” decides to proceed with the pre-order or not, (see...

	6.4.2.2 Case management
	S1. Through all the steps of PMP, a “case manager” exists.
	S2. The case managers of PMP; i.e. the “potential order identifier” and later on the “transaction manager”, can trace all the transaction’s agents assignments.
	P1. It is not stated in which step of PMP the “potential order identifier” is introduced to the customer as the “case manager”.
	R1. The activity by which the customer recognizes the “potential order identifier” as the “case manager” should be clearly defined in the process.
	E1. Given a scenario of PMP, the advisor fails to find even one situation in which a “case manager” does not exist. The reasons are:
	E2. PMP starts when the “potential order identifier” is informed about a potential order and initiates the transaction. The advisor fails to find the situation when the identifier and his/ her role (as the contact point) are known by the customer.
	E3. As we will see in section 6.4.2.3, the activity which results in changing a “transaction manager” is missed and should be in...
	E4. For the following reasons, the advisor can deduce that the “case manager” can always know the information about the assignments of agents to activities.

	6.4.2.3 Changeable agent assignments
	S1. The PMP definition includes the activity of reassigning a “skills manager”. This activity cancels the assignment of the previous agent and at the same time assigns a new agent as the “skills manager”.
	P1. No activity is defined to cancel the assignment of an agent as the “potential order identifier”.
	P2. Once an agent is assigned as the “transaction manager” (see page 116), no activity is defined which can cancel this assignment.
	R1. The activities which can cancel the assignments of “transaction managers” and “potential order identifiers” should be defined and included in the PMP model.

	6.4.2.4 Agent/activity design strategies
	1. One agent (with the help of a computer program) should perform all the subactivities.
	2. One agent (with the help of a computer program) should perform “Identify potential order”, “Collect and evaluate customer dat...
	E1. With regard to the skills required to perform activities, it is very likely that the first design alternative is rejected.
	E2. With regard to the skills required to perform activities, the second design alternative is more likely to be accepted.

	6.5 Summary
	1. In the first section of this chapter, we discussed the implementation of the logical model of agent/activity design strategie...
	2. One of our goals in this chapter was to demonstrate the use of our research in the area of process design. We achieved this g...

	15-ChapterSeven.pdf
	Chapter 7 Summary and future work
	7.1 Summary of the thesis
	1. Demonstrate the heuristic nature of process design
	2. Identify the dominant emerging theme from the heuristics
	3. Create an analytical model of agent setup time
	4. Develop the logical model of agent/activity design strategies
	5. Develop the design validation model
	6. Integrate the FOL models into the Process Integration advisor
	7. Demonstrate the application of our work
	7.1.1 Demonstrate the heuristic nature of process design
	7.1.2 Identify the dominant emerging theme from the heuristics
	7.1.3 Create an analytical model of agent setup time
	7.1.3.1 An overview of the analytical model of agent setup time
	(EQ 64)

	7.1.3.2 The application of our analytical model of agent setup time
	7.1.3.3 The positive aspects of our agent setup time model
	7.1.3.4 The limitation of our agent setup time model

	TABLE 8. The effects of process and agent assignment strategies on agent setup time
	7.1.4 Develop the logical model of agent/activity design strategies
	7.1.4.1 The benefits of the logical model of agent/activity design strategies

	7.1.5 Develop the design validation model
	7.1.5.1 The benefits of our design validation model

	TABLE 9. Summary of the design validation model
	7.1.6 Integrate the FOL models into the Process Integration advisor
	7.1.6.1 The benefits of the Process Integration advisor

	7.1.7 Demonstrate the application of our work
	7.2 Future work
	7.2.1 Analytical model of agent setup time
	7.2.2 Ontologies
	1. information at different levels of abstraction
	2. the relationship between the information and its storage
	3. different classes of information producing and information using actions.

	7.2.3 Implementation
	7.2.4 Developing other formal models of BPR

	16-AppendixA.pdf
	Appendix A
	A.1 Translating constraints from FOL into the PROLOG axioms
	("inf,a1,a2,ag1,ag2) uses_information(a2,inf, ag2) Ÿproduces_information(a1,inf,ag1) … (ag1 = ag2 ⁄ team(ag1,ag2)). (EQ 1)
	1. We transfer (EQ 1) into its equivalent form in which the universal quantifiers are eliminated. Hence, we obtain:
	Ø ($ inf,a1,a2,ag1,ag2) uses_information(a2,inf, ag2) Ÿ produces_information(a1, inf, ag1) Ÿ Ø(ag1=ag2) ŸØ team(ag1,ag2). (EQ 2)
	2. In (EQ 3), we introduce a new FOL predicate (i.e. test) in which the constraint is falsified:
	test º ("inf,a1,a2,ag1,ag2) uses_information(a2,inf,ag2) Ÿ produces_information(a1,inf,ag1) Ÿ Ø (ag1=ag2) ŸØ team(ag1,ag2). (EQ 3)
	3. (EQ 3) is equivalent to the following Prolog axiom:
	test:- uses_information(a2,inf,ag2), produces_information(a1,inf, ag1), not(ag1=ag2), not(team(ag1,ag2)). (EQ 4)
	4. Thus, the original sentence (EQ 1) can be represented in Prolog as:
	not(test). (EQ 5)

	17-AppendixB.pdf
	B.3 Files
	B.3.1 all_thesis.log
	B.3.2 thesis_ld_demo.pl
	B.3.3 dng.pl
	B.3.4 trc.pl
	B.3.5 chg.pl
	B.3.6 stp.pl
	B.3.7 model.pl
	B.3.8 main_def.pl
	B.3.9 scenario.pl
	B.3.10 driver1.pl
	B.3.11 subactivity_def.pl
	B.3.12 pmp_agents
	B.3.13 thesis_Queries.txt

	18-References.pdf
	References
	Bibliography

