COOL: A Language for Describing Coordination in Multi
Agent Systems

Mihai Barbuceanu and Mark S. Fox
Enterprise Integration Laboratory,
Department of Industrial Engineering, University of Toronto,
4 Taddle Creek Road, Rosebrugh Building, Toronto, Ontario, M5S 1A4
email: {mihai, msf} @ie.utoronto.ca

From: Proceedings of the First International Conference on Multiagent Systems. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

Abstract

Agent interaction takes place at several levels. Current
work in the ARPA Knowledge Sharing Effort has
addressed the information content level by the KIF lan-
guage and the intentional level by the KQML language. In
this paper we address the coordination level by means of
our Coordination Language (COOL) that relies on speech
act based communication, but integrates it in a structured
conversation framework that captures the coordination
mechanisms agents use when working together. We are
currently using this language (i) to represent coordination
mechanisms for the supply chain of manufacturing enter-
prises modeled as intelligent agents and (ii) as an environ-
ment for designing and validating coordination protocols
for multi-agent systems. This paper describes the basic
elements of this language: conversation objects, conversa-
tion rules, error recovery rules, continuation rules, conver-
sation nesting. The actual COOL source code and a
running trace for the n-queens problem are presented in
the Appendix.

Topic areas: Coordination, Intelligent agents in enterprise
integration

Introduction

Coordinating the behavior of autonomous intelligent
agents is a major concern of many application domains.
Consider for example the problem of managing the supply
chain of a manufacturing enterprise. The supply chain is a
world-wide network of suppliers, factories, warehouses,
distribution centres and retailers through which raw mate-
rials are acquired, transformed into products and delivered
to customers. In order to operate efficiently, supply chain
functions must work in a coordinated manner. But the
dynamics of the enterprise and of the world market make
this difficult: exchange rates unpredictably go up and

down, political situations change overnight, customers
change or cancel orders, materials do not arrive on time,
production facilities fail, workers are ill, etc. causing devi-
ations from plan. In many cases, these events can not be
dealt with locally, i.e. within the scope of a single supply
chain “agent”, requiring several agents to coordinate in
order to revise plans, schedules or decisions. In the manu-
facturing domain, the agility with which the supply chain

is managed at the (short term) tactical and operational lev-

els in order to enable timely dissemination of information,
accurate coordination of decisions and management of
actions among people and systems, is what ultimately
determines the efficient achievement of enterprise goals
and the viability of the enterprise on the world market.

Our research addresses coordination problems in the sup-
ply chain by organizing the supply chain as a network of
cooperating, intelligent agents, [Pan and Tenenbaum 91,
Tenenbaum et al. 92, Shoham 93] each performing one or
more supply chain functions, and each coordinating their
actions with other agents. Our focus is on supporting the
construction of supply chain intelligent agent systems in a
manner that guarantees that agents use the best communi-
cation and coordination mechanisms available with mini-
mal programming effort on the developers’ side. We
achieve this goal (i) by developing communication and
coordination tools allowing agents to cooperatively man-
age change and cooperatively reason to solve problems,
(ii) developing ontologies that semantically unify agent
communication, (iii) developing intelligent information
infrastructures that keep agents consistently aware of rele-
vant information and (iv) packaging the above theories
into agent development tools that ensure that agents are
able to reuse standardized coordination and reasoning
mechanisms, relieving developers from the tedious pro-
cess of implementing agents from scratch.

One major ingredient that we use in our work is an Agent
Communcation Language (ACL) produced by the ARPA

Barbuceanu 17



From: Proceedings of the First International Conference on Multia

18

Knowledge Sharing Efort [Patil et al. 931, This langtage,
known as Knowledge Query and Manipulation Language
(KQML) [Finin et al. 92, Finin et al. 94], provides a mes-
sage format and message handling protocol supporting
run-time knowledge sharing and interaction among agents.
Interaction is however more than exchanging messages.
One aspect of interaction that we strongly require refers to
coordination protocols, that is the shared conventions
about message exchange that agents use when working
together in a coordinated fashion. The goal of this paper is
to present a language for describing such coordination pro-
tocols which makes use of KQML (or KQML-type lan-
guages) at the communication level. The language, named
COOL (for COOrdination Language), has been imple-
mented and is currenly used in our distributed supply
chain project to model coordination mechanisms among
agents. The paper presents the major elements of the lan-
guage, including conversation objects, conversation rules,
error recovery rules, continuation rules, conversation nest-
ing. The appendix provides a COOL specification of the n-
queens problem and a trace of how the problem is solved
by coordination among agents (queens).

Levels of Agent Interaction

Agent interaction takes place at several levels. The first
level is concerned with the information content communi-
cated among agents. A piece of information communi-
cated at this level may be a proposition (fact) like
“(produce 200 widgets)”. The ARPA Knowledge Sharing
Effort has produced the KIF [Genesereth and Fikes 92]
logic language for describing the information content
transmitted and the conceptual vocabularies (or ontologies
[Gruber 93]) communicating agents must share in order to
understand each other.

The second level specifies the intentions of agents. The
same information content can be communicated with dif-
ferent intentions. For example:

o (ask (produce 200 widgets)) - the sender asks the
receiver if the mentioned fact is true,

o (tell (produce 200 widgets)) - the sender communicates
a belief of his to the receiver,

e (achieve (produce 200 widgets)) - the sender requests
the receiver to make the fact one of his beliefs

e (deny (produce 200 widgets)) - the sender communi-
cates that a fact is no longer believed.

KQML has been designed as a universal language for
expressing such intentions such that all agents would inter-
pret them identically. KQML supports communication
through explicit linguistic actions, called performatives.
As such, KQML relies on the speech act [Searle 69]
framework developed by philosophers and linguists to

ICMAS-95

ms. Copyright ©

995, AAAI (www.aaai.org). All ri reserved.
account %0[‘ human communication. g&tfori 15 currently

being done [Labrou and Finin 93] for endowing KQML
with formal semantics based on the speech-act theory as
formalized ‘and extended within the fields of Computa-
tional Linguistics and Artificial Intelligence [Cohen et al.
90].

The third level is concerned with the conventions that
agents share when interacting by exchanging messages.
The existence of shared conventions makes it possible for
agents to coordinate [Jennings 93, Winograd and Flores
86] in complex ways, e.g. by carying out negotiations
[Sycara 89, Zlotkin and Rosenschein 89] about their goals
and actions. As an example, consider the supply chain of
our TOVE virtual manufacturing enterprise [Fox 93,
Roboam and Fox 92] as a multi-agent system. The Order
Acquisition Agent interacts with the customer and
acquires an order for 200 lamps with a due date for 28 sept
94. It sends this as a proposal to the Logistics Agent.
Knowing that Logistics can only answer with accepting,
rejecting or counter-proposing, Order Acquisition is able
to check that the actual response is one of these and carry
out a corrective dialogue with Logistics if this is not the
case or if other events occur (such as delays or message
shuffling). If Logistics answers with a counter-proposal
(e.g. 200 lamps with due date 15 oct 94), Order Acquisi-
tion may use knowledge about acceptable trade-offs and
negociate with Logistics an amount and a due-date that
can be achieved and satisfies the customer. In its turn,
upon receiving the order proposal, Logistics will start
negotiations with the Scheduling agent to determine the
feasibility of scheduling the production of the order and
with the Transportation agent to determine feasibility of
the delivery date.

This is the level of interaction we are supporting with the
COOL language described in this paper.

Finally, a fourth level of interaction is concerned with how
agents are modeled, (e.g. which are their beliefs, goals,
authorities etc. in the organizations they are part of). We
address this aspect by building organizational models and
representing the agents as components of these organiza-
tions. This work will be reported elsewhere.

COOL: A Language Layer for Defining
Coordination Models And Protocols

In any multi-agent system, the coordination level must be
explicitely captured in order to have agents cooperate in
non-trivial ways. We model the coordination level by
means of a coordination language that is used in particular
for describing coordination in the supply chain of the
TOVE enterprise and in general as a coordination specifi-
cation language for any multi-agent system.



From: Proceedings of the First International Conference on Multiagent Systems. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

Basic components

We model a coordination activity as a conversation among
two or more agents, specified by means of a finite state
machine (FSM):

¢ The states of the FSM represent the states a conversa-
tion can be in. There is a distinguished initial state any
conversation starts in, and several terminating states
that when reached signal the termination of the conver-
sation.

o The messages exchanged are represented as performa-
tives (speech acts) of the agent communication lan-
guage. The content level of performatives is not part of
the negotiation protocol, but determines the course of
an individual negotiation as it is used in the decision-
making of agents.

o A set of conversation rules specify how an agentin a
given state receives a messages of specified type, does
local actions (e.g. updating local data), sends out mes-
sages, and switches to another state.

o A set of error recovery rules specify how incompatibil-
ities among the state of a conversation and the incom-
ing messages are handled.

o A set of continuation rules specify how agents accept
requests for new conversations or select a conversation
to continue from among the existing ones.

o Conversation classes specify the states, conversation
rules and error rules that are specific to a type of con-
versation. An agent has several conversation classes it
can use when communicating with other agents.

o Actual conversations instantiate conversation classes
and are created whenever agents engage in communi-
cation.

These elements are described in detail in the remainder of
this section.

Speech acts

Agents cooperate and coordinate through communication.
We assume the existence of a standard set of speech acts
that define the communicative actions available within an
organization. These speech acts are represented as perfor-
matives of the agent communication language. To the
standard speech acts provided by our agent communica-
tion language - KQML - we have added a number of
higher order speech acts like:

e Propose. This is used to propose to an agent a subgoal
to achieve. For example:
(proposs :content (produce (widgets 200)(time “19-sep-847))).

s Counter-Propose. A counter proposal is another sub-
goal that partially satisfies the initial goal of a propose.
The use of this speech act can result in a sequence of
counter-proposals from both the original proposer and
the respondent. An example is:

(counter-propose :content (produce (widgets 200)(time “20-
sep-947)).

® Accept and Reject. These are used to signal acceptance,
respectively rejection of a proposal or counter-pro-
posal. Rejection starts a new negotiation phase.

o Cancel. This cancels a previously accepted proposal or
counter-proposal.

e Satisfy. An agent announces that a requested goal has
been achieved. For example:
(satisfy :content (counter-propose :content (produce (widgets
200)(time “20-sep-94")))

e Fail. An agent informs that execution of a committed
goal has failed.

FSM specification

The models of coordination involving speech acts like the
above ones are described with finite state machines. An
example is shown in figure 1.

Yo s

propose/

FIGURE 1. State transitions for negotiation.

Figure 1 uses the notation <received speech act.> / <sent
speech act> to label edges in the diagram. When the con-
versation is in a given state and if a speech act is received,
the agent performs local processing (not shown), sends out
the shown speech act and switches to the state pointed to
by the edge. State 1 is the initial state and states 5, 6 and 7
are final states. A conversation starts in state 1 with the
agent receiving a speech act. If it is a proposal, the agent
switches to state 2. In this state it may accept the proposal,
reject it, or issue a counter-proposal. If a counter-proposal
is issued (state 4), it may be accepted by the interlocutor
and the agent, or rejected. If a (counter-) proposal is finally

Barbuceanu 19



agent will try to carry out whatever actions are implied by
its acceptance of the proposal and may either report suc-
cess and go to state 6 or failure and go to state 7. In state 5,
the conversation is terminated because the (counter) pro-
posal has been rejected by one of the participants.

This example of conversation - and coordination - model
describes message exchange from the viewpoint of the
agent that is satisfying requests from other agents. From
the viewpoint of the agent that makes the request in the
first place the conversation model will be different.

Conversation models of this kind are hence described from
the viewpoint of one participating agent. The other partici-
pating agents have their own models and this poses diffi-
cult problems for the verification/validation of
conversations (dead-locks, message shuffling, etc.). Von-
Martial [92] describes techniques for designing consistent
asynchronous conversations described by FSMs.

Conversation rules

Conversation rules specify agents’ reasoning for choosing
the next edge in the diagram, what internal processing they
do when switching states and what messages they send
out. A rule example is the following:

(def-conversation-rule r1

:current-state 2

received

(propose :sender Zinitiator :content (produce (?what
?amount)(time ?date)))

:such-that

(and (achievabie (produce ?what 2amount))
(not-achievable (time ?date))

(possible-altemative (time ?date) (time ?date1)))
:next-state 3

‘transmit (counter-propose :content (produce (?what 2amount)
(time ?date1))))

Rules have local variables that are unified when rules are
applied. Above, ?what, 2amount, ?date and ?date1 are
such variables. Besides these local variables, there exists a
persistent conversation environment that provides persis-
tent variables that can be used to transmit values between
rule firings. For example, the initiator of a conversation is
stored in such a variable (?initiator above) and can be used
in rules.

To test for incoming messages, conversation rules provide
constructs for testing the first message in the queue - con-
sidering the queue ordered - or to look for messages any-
where in the queue - considering the queue as a set. The
latter is useful as often the communication services can not
deliver messages in the order they were sent. It is also pos-
sible to check in a rule for the ordered or unordered

20 ICMAS-95

From: Procgelogig Ve AVEFRBHE SWNSHERES WA P RUCIERS: CORGR AP ARSI L SEERNGS for ber-

ter handling of messages from several agents in conversa-
tions involving more than two participants,

Error recovery rules

A situation that can easily occur is that the current mes-
sage received in a conversation can not be handled by any
of the rules in the current state. This signals an error that
can have many causes - message delays, destroyed mes-
sage order, lost messages, wrong messages sent out, etc.

Agents cope with this situation at two levels. First, they
can use more elaborate conversation structure and rules
that take such possibilities into account. Second, they can
invoke a set of error recovery rules associated with each
conversation. Error recovery rules may perform any action
deemed appropriate, such as discarding inputs, initiating
clarification conversations with the interlocutor, changing
the state of the conversation, or just reporting the error and
terminating the conversation. The advantage of error
recovery rules is that they allow complex error recovery
policies to be explicitly designed and (re)used among
many agents and conversations.

Defining conversations

We distinguish among conversation classes and actual
conversations. A conversation class specifies the states,
variables, conversation rules, error recovery rules and con-
trol mechanisms that apply these kinds of rules. An actual
conversation is an instance of a conversation class. There
can be many actual conversations instantiating the same
conversation class (for different agents and different states
and messages exchanged).

The linguistic construct we use to define conversation-
classes bundles together the above elements. An example
conversation class definition is:

(def-conversation-class Cnv-1

initiator ?Initiator

:respondent 2respondent
:variables (?v1 7v2)

linitial-stale 80

‘final-states (85 87)
‘conversation-rules ((s0 r1 r2) ...)
:conversation-rule-applier CRA-1
:error-rules (61 e2 ...)
:error-rule-applier ERA-1)

In this definition, :initiator and :respondent are slots
holding the names (and possibly initial values) of distin-
guished persistent variables. :conversation-rules and
‘error-rules hold the corresponding sets of rules govern-
ing the conversation (note that conversation rules are



From: Proceedings of the First International Conference on Multiagent Systems. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

indexed on the state they apply to). :conversation-rule-
applier and :ermor-rule-applier hold the functions that
apply the two kinds of rules.

Initiating conversations

When an agent wishes to initiate a conversation in which it
will have the initiative, it creates an instance of a conver-
sation class. When the instance is executed, messages will
be sent and received according to the conversation class.
When a message is sent to an agent, the sent performative
must contain a :conversation slot (an extension to
KQML) that contains a conversation name that is shared
by the communicating agents. For example, agent a2 may
send to agent a1 the following message:

(propose :sender a2
‘receiver al
:content (produce widget 100)
reply-with r1
:conversation ct).

Agent a2 has an actual conversation named cl that is
managed by the rules of one of a2’s conversation classes.
If a1 has an actual conversation named c1, then the rules
in the conversation class that a1 associates to its ¢1 actual
conversation will be used. If receiver a1 has no conversa-
tion c1, the message is interpreted as a request for a new
conversation made by a2. In this case, a1 must retrieve
and instantiate & conversation class to handle the commu-
nication.

Our current mechanism for retrieving the conversation
class that will manage a request for a new conversation is
based on two elements. First, any message that is a request
for conversation must have an aditional slot :intent slot
(another - and last - extension to KQML) that contains a
description of the intent of the requesting agent. The
receiving agent tries to find a conversation class that
matches the expressed :intent of the sender. This is done
by having conversation classes specify an :intent-test
predicate that will be used with the actual intent as argu-
ment. If the test determines that a conversation class can
serve the :intent of a request, then the second element is
used. This is a verification that in the initial state of the
selected conversation class there exists at least one rule
that can be triggered by the received message. If this is the
case, a new (actual) conversation controlled by the
retrieved conversation class is created and the receiver
agent will use it as its conversation with the sender.

Suspending conversations

The need to suspend an ongoing conversation until another
terminates arises from two major reasons. First, an agent a
that has an ongoing conversation with an agent b may

need sometime during that conversation to start a new con-
versation with an agent C. For example this may be
required to acquire information, to achieve a goal or to
correct an error. Second, an agent a having a conversation
with an agent b may be interrupted during this conversa-
tion by a higher priority request from an agent .

To allow for these situations, we let each agent have a set
of ongoing conversations. When an agent initiates a new
conversation, the new conversation object is added to this
set. When a conversation has to be interrupted because
another conversation must take place, the old conversation
is suspended, and the system marks the suspended conver-
sation as waiting for the new conversation to complete.
This creates dependency records among conversations that
are used when selecting the next conversation to work on.
Because conversation objects can be inspected, the states
and variable values of a conversation that another conver-
sation waits for can be used by the waiting conversation
when the latter is resumed.

For example, consider again the supply chain of an enter-
prise organized as a multi-agent system. The Order Acqui-
sition Agent may have a conversation with the Logistics
Agent about a new order. The Logistics Agent may tempo-
rarily suspend this conversation to start a conversation
with the Scheduling Agent to inquire about the feasibility
of a due date. Having obtained this information, the Logis-
tics Agent will resume the suspended conversation with
Order Acquisition.

Continuation rules

The next element of the framework is the ability of agents
to specify their policies of selecting the next conversation
to work on. Since an agent can have many ongoing con-
versations (some may be waiting for input, some may be
waiting for other conversations to terminate, others may
be ready for execution), the way it selects conversations
reflects its priorities in coordination and problem-solving.

The mechanism we use to specify these policies is contin-
uation rules. Unlike conversation rules and error rules,
which are atiached on conversation classes, continuation
rules select from among the conversations of an agent and
hence are attached on agents.

Continuation rules perform two functions. First, they test
the input queue of the agent and apply the conversation
class recognition mechanism to initiate new conversations.
Second, they test the data base of ongoing conversations
and select one existing conversation to execute.

Which of these two actions has priority (serving new
requests versus continuing existing conversations) and
which request or conversation is actually selected, is rep-

Barbuceanu 21



resented in the set of continuation rules associated to the
agent. Our agent definition mechanism allows the specifi-
cation, for each agent, of both the set of continuation rules
and the continuation rule applier.

For illustration, the following continuation rule specifies
that a new conversation request is served if there exists a
conversation class that accepts the first message in the
agent queue:

(def-continuation-rule cont-1

:input-queuse-test

(lambda(queue)

(if gueue (exists-conv-class-initially-accepting (first queus))
nil))).

Defining agents

The last element of the framework is a simulation environ-
ment that allows defining the agents in the system, their
conversation classes, actual conversations and continua-
tion rules. A number of functions are provided that allow
agent systems thus defined to be simulated by managing
message passing and the activation of individual agents.
The n-queens solution in the Appendix uses this facility.

Concluding remarks

Agent interaction takes place at several levels. Current
work has addressed the information content level by the
KIF language, the intentional level by the KQML lan-
guage (both outcomes of the ARPA Knowledge Sharing
Effort). We propose to address the coordination level by
the COOL language that relies on speech act based com-
munication, but integrates it in a structured conversation
framework that captures the coordination mechanisms
agent used when working together. COOL provides con-
structs for describing:

structured conversations (as finite state machines),

e conversation rules for describing the state transitions
within a conversation,

o error rules for specifying corrective actions to take
when unexpected, delayed or otherwise perturbed
communication occurs,

s continuation rules for allowing agents to define their
own policies for selecting which conversation to con-
tinue,

e a mechanism for managing multiple conversations of a
single agent, by maintaining dependencies among con-
versations (such as having one conversation wait for
another to reach a given status).

We are currently using this language to represent coordi-
nation mechanisms for the supply chain of manufacturing
enterprises modeled as intelligent agents. Because of the
simulation capabilities of our implementation, we are also

22 ICMAS-95

From: Proceedings of the First International Conference on Multiagent Systems. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

using the language as an environment for designing and
validating coordination protocols, without having to run
actual agent systems for this purpose.

The Appendix presents the actual COOL source code and
a running trace for the n-queens problem described as a
coordination problem in the sense of our language.

Acknowledgements

This research is supported, in part, by the Manufacturing
Research Corporation of Ontario, Natural Science and
Engineering Research Council, Digital Equipment Corp.,
Micro Electronics and Computer Research Corp., Spar
Aerospace, Carnegie Group and Quintus Corp.

References

[1] Cohen, P., Morgan, J., Pollack, M. (1990).(editors) Intentions
in Communication, MIT Press Cambridge, MA.

[2] Finin, T. et al.(1992). Specification of the KQML Agent
Communication Language, The DARPA Knowledge Sharing Ini-
tiative, External Interfaces Working Group.

[3] Finin, T., Fritzson, R., McKay, D. and McEntire, R.(1994).
KQML - An Information and Knowledge Exchange Protocol, in
Kazuhiro Fuchi and Toshio Yokoi, editors, Knowledge Building
and Knowledge Sharing, Ohmsha and 10S Press, 1994.

[4] Fox, M. S. (1993). A Common-Sense Model of the Enter-
prise, Proc. of Industrial Engineering Research Conference.

[5] Genesereth, M.R., Fikes, R.E. (1992). Knowledge Inter-
change Format, Version 3.0, Reference Manual, Computer Sci-
ence Dept., Stanford University, Technical Report Logic-92-1.

[6) Gruber, T. R. (1993). Toward principles for the design of
ontologies used for knowledge sharing, Report KSL 93-04, Stan-
ford University.

[7] Jennings, N., R.(1993). Commitments and conventions: The
foundation of coordination in multi-agent systems, The Knowl-
edge Engineering Review, vol. 8:3, pp 223-250.

[8] Labrou, Y. and Finin, T.(1993). A Semantics Approach for
KQML - A General Purpose Communication Language for Soft-
ware Agents.

[9] Pan, J.Y.C., Tenenbaum, J. M. (1991). An Intelligent Agent
Framework for Enterprise Integration, IEEE Transactions on
Systems, Man and Cybernetics, 21, 6, pp. 1391-1408.

[10] Patil, R., Fikes, R., Patel-Schneider, P., McKay, D., Finin,
T., Gruber, T., and Neches, R. (1992). The ARPA Knowledge
Sharing Effort: Progress report. In B. Nebel, C. Rich, and W.
Swartout, editors, Principles of Knowledge Representation and
Reasoning: Proceedings of the Third International Conference
(KR'92), San Mateo, CA, Nov. 1992. Morgan Kaufmann.

[11] Roboam, M., Fox, M. S. (1992). Enterprise Management
Network Architecture, A Tool for Manufacturing Enterprise Inte-



gration, Artificial Intelligence Applications in Manufacturing,
AAAI Press/MIT Press.

[12] Seartle, J. (1969). Speech Acts, Cambridge University Press,
Cambridge, UK.

[13] Shoham, Y. (1993). Agent-Oriented Programming, Artificial
Intelligence 60 (1993) pp 51-92.

[14] Sycara, K., (1989). Multi-agent compromise via negotiation,
In Les Gasser and Michael N. Huhns, editors, Distributed Artifi-
ciall Intelligence, Volume II, pp. 119-137, Pitman Publishing,
London.

[15] Tenenbaum, J. M., Gruber, T. R., Weber, 1.C. (1992). Les-
sons from SHADE and PACT, Enterprise Modeling and Integra-
tion, C. Petrie (ed), McGraw-Hill.

[16] vonMartial, F. (1992). Coordinating Plans of Autonomous
Agents, Lecture Notes in Artificial Intelligence 610, Springer
Verlag Berlin Heidelberg.

[17] Winograd, T. and Flores, F. (1986) Understanding Comput-
ers and Cognition: A New Foundation for Design, Ablex Pub-
lishers.

[18] Zlotkin, G., Rosenschein, J.S. (1989). Negotiation and task
sharing among autonomous agents in cooperative domains, Pro-
ceedings of IJCAI-89, pp. 912-917, Detroit, MI.

Appendix: COOL solution to the n queens

problem
» Notes:
;i - assume 4 queens
e = 7%, 7y, elc. dencte variables
w = (?(function-name arg1 arg2 ...)) denotes an evaluable
expression that is replaced by it value in the body of a
mitransmitted message. Any variables used in the
11+ expression are first replaced by their values.
i - messages consist of a list of row positions for the queens
»+: at the left of any given queen (queens move along preas-
igned columns)

5» 1. the 4 queens as agents

(def-agent 'q1)
(def-agent 'q2)
(def-agent 'q3)
(def-agent 'q4)

+: 2. the conversation for the leftmost (first) queen

(def-conversation-class 'qc-1
:name 'first-queen-class
:content-language ’list
:speech-act-language 'kqmi
sinitial-state 's0
Afinal-states ‘(yes no))

33 3. the conversation for the middle queens (no matter how many)

(def-conversation-class 'qc-2
:name ‘middie-queen-class
:content-language ’list

From: Proceedings of the First International Conference on Multiagent Systems. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

:speech-actlanguage 'kqml
initial-state "s0
final-states '(yes))

3+ 4. the conversation for the rightmost (last) queen

{def-conversaticn-class 'qc-3
:name ’last-queen-class
:content-language “list
:speech-act-language kqmi
Ainitial-state 's0
‘final-states ‘(yes))

33 5. rules for first-queen-class

(def-conversation-rule 'r11
:name 'r1
:current-state 's0
:next-state 's1
transmit '(propose :sender q1
:receiver q2
:content (?(choose-new-position
?agent nil))
:conversation c1))

(def-conversation-rule 'r12
mame 'r2
scurrent-state "s1
:received '(reject :sender q2 :content 2c)
:such-that ‘(another-position-exists ?agent 7c)
:next-state 's1
‘transmit (propose :sender q1 :receiver q2
:content (?(choose-another-postion ?agent 7c))
:conversation c1))

(def-conversation-rule 'r13

:name r3

current-gtate 's1

:received '(reject :sender g2 :content ?¢)
:such-that '(not(another-position-exists ?agent ?c))
:next-state 'no

:do "(format t *~%;;; No solution possible™))

(def-conversation-rule 'r14

:name 'ré

‘current-state 's1

rreceived '(accept :sender q2 :content ?c)
:next-state 'yes

:do *(format t “~%;;; Solution found ~s* 7c))

+» 6. rules for middle-queen-class

{def-conversation-rule 'r21
:name 'r1
:current-state 's0
:recelved '(propose :sender ?s
:content ?c
‘conversation ?conv)
:such-that *(and (at-left ?s ?agent)
(noi(new-position-exists ?agent
7c))
:next-state ‘80

Barbuceanu 23



‘transmit ‘(reject :sender ?agent
receiver 78
scontent ?¢
:conversation ?conv))
(def-conversation-rule 'r22
:name 'r2
‘current-state 'sO
:received ‘(propose :sender 78 :content ?¢
:conversation ?conv)
:such-that ‘(and(at-left ?s ?agent)
(new-position-exists ?agent 2c))
:next-state 's1
transmit '(propose :sender ?agent
:receiver (?(right-of 2agent))
:content (?(choose-new-position
?agent 7c))
:conversation ?conv))
(def-conversation-rule 'r23
‘name 'r3
:current-state 's1
:received '(accept :sender 78 :content ?¢ :conversation ?conv)
:such-that '(at-right 7s 7agent)
:next-state ‘yes
‘transmit '(accept :sender ?agent
:content ?¢
zreceiver (?(left-of 2agent))
:conversation ?conv))
(def-conversation-rule 'r24
:name 'rd4
:current-state 's1
:received '(reject :sender ?s :content ?¢ :conversation ?conv)
:such-that '(and(at-right ?s ?agent)
(another-position-exists ?agent?c))
:next-state 's1
‘transmit ‘(propose :sender ?agent
:raceiver (?(right-of 2agent))
:content(?(choose-another-position
7agent ?c))
:conversation ?conv))
(def-conversation-rule 'r25
:name 'r5
:current-state ’s1
‘received '(reject :sender 78 :content ?¢ :conversation ?conv)
:such-that (and(at-right ?s 7agent)
(not(another-position-exists 2agent
?c)))
next-state 's0
:transmit (reject :sender ?agent
:receiver (?(left-of 2agent))
:content (?(remove-last 7c))
:conversation ?conv))

33 7. rules for last-queen-class

(def-conversation-rule 'r31
:name r1
:current-state 'sO
:received ‘(propose :sender ?8 :content ?c :conversation
?conv)
:such-that '(and (at-left 7s ?agent)
(new-position-exists ?7agent ?c))
:next-state ‘'yes

24 ICMAS-95

From: Proceedings of the First International Conference on Multiagent Systems. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

:transmit "(accept :sender ?agent
:recelver (?(left-of 2agent))
:content (?(choose-new-position
?agent 7c))
:conversation ?conv))
(def-conversation-rule 'r32
‘name 'r2
:current-state 'sO
rreceived ‘(propose :sender ?8 :content ?c :conversation
?c0nv)
:such-that '(and(at-left ?s ?agent)
(not(new-position-exists ?agent
()]
:next-state 's0
Aransmit *(reject :sender ?agent
:receiver (?(left-of ?agent))
:content ?¢
:conversation 7conv))
+»; Execution trace - exchanged messages
;:(PROPOSE :SENDER Q1 :RECEIVER Q2 :CONTENT (0) :CON-
VERSATION C1)
;::(PROPOSE :SENDER Q2 :RECEIVER Q3 :CONTENT (0 2) :CON-
VERSATION C1)
3»»(REJECT :SENDER Q3 :RECEIVER Q2 :CONTENT (0 2) :CON-
VERSATION Cl)
;»:(PROPOSE :SENDER Q2 :RECEIVER Q3 :CONTENT (0 3) :CON-
VERSATION C1)
33»s (PROPOSE :SENDER Q3 :RECEIVER Q4 :CONTENT (0 3 1)
:CONVERSATION Cl)
s»; (REJECT :SENDER Q4 :RECEIVER Q3 :CONTENT (0 3 1) :CON-
VERSATION C1)
;3» (REJECT :SENDER Q3 :RECEIVER Q2 :CONTENT (0 3) :CON-
VERSATION C1)
+»s (REJECT :SENDER Q2 :RECEIVER Q1 :CONTENT (0) :CONVER-
SATIONCI1)
+»s (PROPOSE :SENDER Q1 :RECEIVER Q2 :CONTENT (1) :CON-
VERSATION C1)
s+ (PROPOSE :SENDER Q2 :RECEIVER Q3 :CONTENT (1 3) :CON-
VERSATION C1)
;> (PROPOSE :SENDER Q3 :RECEIVER Q4 :CONTENT (1 3 0)
:CONVERSATION CI)
;; (ACCEPT :SENDER Q4 :RECEIVER Q3 :CONTENT (1 302)
:CONVERSATION C1)
;1 (ACCEPT :SENDER Q3 :CONTENT (1 3 0 2) :RECEIVER Q2
:CONVERSATION Cl1)
;s (ACCEPT :SENDER Q2 :CONTENT (1 3 0 2) :RECEIVER Q1
:CONVERSATION Cl)
+5; Solution found (130 2)

3+; No agent can be activated



