Coordinating Multiple Agents in the Supply Chain

Mihai Barbuceanu and Mark S. Fox
mihai,msf@ie.utoronto.ca
Enterprise Integration Laboratory
University of Toronto

4 Taddle Creek Road, Toronto, M5S 3G9 On, Canada

Abstract

The agent view provides a level of abstraction at
which we envisage compulational systems carrying out
cooperative work by interoperating across networked
people, organizations and machines. A major chal-
lenge tn building such systems is coordinating the be-
havior of the individual agents to achieve the individ-
ual and shared goals of the pariicipants. In this pa-
per we propose a conceptualization of the coordination
task around the notion of structured ”conversation”
amongst agents. Based on this notion we bwild a com-
plete multiagent programming language and system for
explicitly represeniing, applying and capturing coordi-
nation knowledge. The language provides KQML-based
communicalion, an agent definition and ezecution en-
vironment, support for describing interactions as mul-
tiple structured conversations among agents and rule-
based approaches lo conversation selection, conversa-
tion ereculion and event handling. The major applica-
tion of the system is the construction and integration of
multiagent supply chain systems for manufacturing en-
terprises. This application is used throughout the paper
io illustrate the iniroduced concepts and language con-
structs.

1. Introduction

The agent view provides a level of abstraction at
which we construe computational systems that inter-
operate across networks linking people, organizations
and machines on a single virtual platform. Coordinat-
ing the behavior of the individual agents to achieve
both the individual and the shared goals of the partic-
ipants is one major problem to be solved before we can
make effective use of agent communities.

Coordination has been defined as the process of
managing dependencies between activities [8]. An agent

1080-1383/96 $5.00 © 1996 IEEE
Proceedings of VYET ICE "96

134

that operates in an environment holds some beljefs
about the environment and can use a number of ac.
tions to affect the environment. Coordination prob.
lems arise when (i) there are alternative actions the
agent can choose from, each choice affecting the envi.
ronment and the agent and resulting in different states
of affairs and/or (ii) the order and time of executing qc.
tions affects the environment and the agent, resulting
in different states of affairs. The coordination probler
is made more difficult as agents usually have incom-
plete knowledge of the environment and of the copge.
quences of their actions and the environment changes
dynamically making it more difficult to evaluate the
current situation and the possible outcomes of actions,
In a multi-agent system, the environment is populateq
by other agents, each pursuing their own goals and
each endowed with their own capabilities for action. In
this case, the actions performed by one agent constrain
and are constrained by the actions of other agents. To
achieve their goals, agents will have to manage these
constraints by coordination.

In this paper we explore the view that the coordina-
tion problem can be tackled by explicitely represent-
ing knowledge about the interaction processes taking
place among agents. Jennings [5] has coined the term
”cooperation knowledge level” to separate the social
interaction know-how of agents from their individual
problem-solving know-how and to help focus efforts on
coming with principles, theories and tools for dealing
with social interactions for problem solving. We inves-
tigate this hypothesis by proposing a conceptualization
of coordination around the notion of structured ”con-
versations” amongst agents, by building a complete
programming language and system for this conceptual-
ization and by applying this system to the coordination
of supply chain agents in an enterprise integration do-
main. The paper is organized as follows. In section 2
we describe the organization of the supply chain as 3
multiagent system. In section 3 we discuss our coordi-

nation system. In section 4 we show how the system is
applied to manage coordination in the supply chain.

2. Integrating the Supply Chain

The supply chain of a modern enterprise is a world-
wide network of suppliers, factories, warehouses, distri-
bution centres and retailers through which raw materi-
als are acquired, transformed into products, delivered
to customers, serviced and enhanced. In order to op-
erate efficiently, supply chain functions must work in
a tightly coordinated manner. But the dynamics of
the enterprise and of the world market make this dif-
ficult: exchange rates unpredictably go up and down,
customers change or cancel orders, materials do not
arrive on time, production facilities fail, workers are
ill, etc. causing deviations from plan. In many cases,
these events can not be dealt with locally, i.e. within
the scope of a single supply chain ”agent”, requiring
several agents to coordinate in order to revise plans,
schedules or decisions. In the manufacturing domain,
the agility with which the supply chain is managed at
the tactical and operational levels in order to enable
timely dissemination of information, accurate coordi-
nation of decisions and management of actions among
people and systems, is what ultimately determines the
efficient achievement of enterprise goals and the viabil-
ity of the enterprise on the world market.

We address these coordination problems by orga-
nizing the supply chain as a network of cooperating
agents, each performing one or more supply chain func-
tions, and each coordinating their actions with other
agents. Figure 1 shows a multi-level supply chain. At
the enterprise level, the Logistics agent interacts with
the Customer about an order. To achieve the Cus-
tomer’s order, Logistics has to decompose it into activ-
ities (including for example manufacturing, assembly,
transportation, etc.). Then, it will negotiate with the
available plants, suppliers and transportation compa-
nies the execution of these activities. If an execution
plan is agreed on, the selected participants will com-
mit themselves to carry out their part. If some agents
fail to satisfy their commitment, Logistics will try to
find a replacement agent or to negotiate a different con-
tract with the Customer. At the plant level, a selected
plant will similarly plan its activities including purchas-
ing materials, using existing inventory, scheduling ma-
chines on the shop floor, etc. Unexpected events and
breakdowns are dealt with through negotiation with
plant level agents or, when no solution can be found,
submitted to the enterprise level.

135

Warehousel

. Warehouse2

Transportation

enterprise level

Customer

|

Plantl —

plant level
Plany2
Resource }

v @

Figure 1. Multi-level supply chain.

3. The Coordination Language
3.1. Communication

COOL has a communication component that imple-
ments an extended version of the KQML language. Es-
sentially, we keep the KQML format for messages, but
we leave freedom to developers with respect to the al-
lowed vocabulary of communicative action types. Also,
we do not impose any content language. We have im-
plemented a mail system for KQML messages providing
TCP/IP supported transport and services like persis-
tent storage of received KQML messages, visual tools
for message browsing, composition, sorting and general
pattern matching. The following example illustrates
the form of extended KQML we are working with.

(propose ;; new
:language KIF ;; communicative
:sender A ;3 action

:receiver B B
:content (or (produce 200 widgets)
(produce 400 widgets))
:conversation Ci new slot
:intent (explore ;; new slot
fabrication possibility))

’

3.2. Agents and Environments

In COOL, an agent is a programmable entity that
can exchange messages within structured ”conversa-
tions” with other agents, change state and perform ac-
tions. A COOL agent is defined by giving it a name
and ”plugging in” an interpreter that selects and man-
ages its conversations. The interpreter applies specially
defined control rules (called continuation rules) to de-
termine which conversation to work on next.

(def-agent ’customer
:continuation—control ’agent-control-ka

-

:continuation-rules “(cont-1 cont-2
cont-3 cont-4))

Agents carry out conversations with other agents or
perform local actions within their environment. Agents
exist in local or remote environments. To control agent
execution within an environment, we use conversation
managers. These specify the set of agents they man-
age, a pluggable control function selecting agents for
execution and the instrumentation (e.g. tracing, log-
ging, etc.) of agent executlon:

(def-conversation—-manager ‘ml
:agent—control ‘execute-agent
:agents ‘(customer logistics plantl .. .

The purpose of the environment is to ” run” agents
by managing message passing and scheduling agents for
execution. Environments exist on different sites (ma-
chines) and a directory service makes message trans-
mission work just the same among sites as within sites.
This has the advantage that a set of COOL agents that
run in an environment that exists on a single machine
will also run without any modification in several envi-
ronments on several machines. Thus, we can develop
and test on a single machine and then deploy with no
modification (except for the directory table) on the net-
work. The environment also provides a wealth of tools
for visual manipulation - browsing, editing, environ-
ment set-up, animated execution.

3.3. Conversations

Agents interact by carrying out ” conversations” .
Within a conversation, agents exchange messages ac-
cording to mutually agreed conventions, change state
and perform local actions. COOL provides a con-
struct for defining generic conversations, the conversa-
tion class and a corresponding instance construct, the
actual conversation.

Conversation classes are rule based descriptions of
what an agent does in certain situations (for exam-
ple when receiving messages with given structure).
COOL provides ways to associate conversation classes
to agents, thus defining what sorts of interactions each
agent can handle. A conversation class specifies the
available conversation rules, their control mechanism
and the local data-base that maintains the state of the
conversation. The latter consists of a set of variables
whose persistent values (maintained for the entire du-
ration of the conversation) are manipulated by con-
versation rules. Conversation rules are indexed on the
finite set of values of a special variable, the current-
state. Because of that conversations admit a finite state

136

(def-conversation—-class 'customer—-conversati
:name ’customer-conversation
:content-language ’list
:speech-act-language ’kqml
:initial-state ’start
:final-states ’(rejected failed satisfied)
:control ’interactive-choice-control-ka
:rules ’((start cc-1)

(proposed cc-13 cc-2)

(working cc-5 cc-4 cc-3)
(counterp cc-9 cc—8 cc-7 cc-6)
(asked cc-10)

(accepted cc-12 cc-11)))

Figure 2. Customer-conversation.

as|

rejected

counterp

1
failed
working
accepted
5 satisfied
rejected

Figure 3. Finite state representation of customer-
conversation.

machine representation that is often used for visualiz
tion and animation purposes. VonMartial [9] describ.
techniques for designing consistent asynchronous co
versations described by finite state machines. Figure
shows the conversation class governing the Customer
conversation with Logistics in our supply chain applic
tion. Figure 3 shows the associated transition diagra
of this conversation class.

Error recovery rules are another component of co
versation classes. They specify how incompatibiliti
among the state of a conversation and the incomi
messages are handled. Such incompatibilities can ha
many causes - message delays, message shuffling, lc
messages, wrong messages sent out, etc. Error recove
rules deal with this by performing any action deem
appropriate, such as discarding inputs, initiating cle
ification conversations with the interlocutor, changl
the state of the conversation or just reporting an erx

(def-conversation-rule ’crn-1
:current-state ’start
:received
’(propose :sender customer
:content (customer—order
:has-line-item ?71i))
:next-state ’order-received
:transmit ’(tell :sender 7agent
:receiver customer
:content ’(working on it)
:conversation ?convn)
:do ’(put~conv-var ?conv ’7order
(cadr (member :content ?message)))
:incomplete nil)

Figure 4. Conversation rule.

Actual conversations instantiate conversation classes
and are created whenever agents engage in communi-
cation. An actual conversation maintains the current-
state of the conversation, the actual values of the con-
versation’s variables and various historical information
accumulated during conversation execution.

Each conversation class describes a conversation
from the viewpoint of an individual agent (in figure 2
the Customer). For two or several agents to ”talk”, the
executed conversation class of each agent must gener-
ate sequences of messages that the others’ conversation
classes can process. Thus, agents that carry out an ac-
tual conversation C actually instantiate different con-
versation classes internally. These instances will have
the same name (C) inside each agent, allowing the sys-
tem to direct messages appropriately.

3.4. Conversation Rules

Conversation rules describe the actions that can be
performed when the conversation is in a given state. In
figure 2 for example, when the conversation is in the
working state, rules cc-5, cc—4 and cc-3 are the only
rules that can be executed. Which of them actually
gets executed and how depends on the matching and
application strategy of the conversation’s control mech-
anism (the :control slot). Typically, we execute the
first matching rule in the definition order, but this is
easy to change as rule control interpreters are pluggable
functions that users can modify at will. Figure 4 illus-
trates a conversation rule from the conversation class
that Logistics uses when talking to Customer about
orders.

Essentially, this rule states that when Logistics, in
state start, receives a proposal for an order (described

137

as a sequence of line-items), it should inform the sender
(Customer) that it has started working on the proposal
and go to state order-received. Note the use of vari-
ables like ?1i to bind information from the received
message as well as standard variables like ?convn al-
ways bound by the system to the current conversa-
tion. Also note a side-effect action that assigns to the
?order variable of the Logistics’ conversation the re-
ceived order. This will be used later by Logistics to
reason about order execution. Among possibilities not
illustrated, we mention arbitrary predicates over the
received message and the local and environment vari-
ables to control rule, matching and the checking and
transmission of several messages in the same rule.

3.5. Initiating Conversations

When an agent wishes to initiate a conversation in
which it will have the initiative, it creates an instance
of a conversation class. When this conversation in-
stance is executed, messages will be sent and received
according to the conversation class. When a message
is sent to an agent, it must contain a :conversation
slot (an extension to KQML) that contains the name
of an actual conversation that the recipient already has
or will create to handle the interaction. To find out
which conversation class to instantiate in response to
a message, a receiver agent may use either the value of
the :intent slot of the message (another extension to
KQML) matching it with known intents that its con-
versation classes can handle, or simply select a con-
versation class that in the initial state has rules that
accept the message just sent.

3.6. Continuing Conversations

Agents are able to specify their policies for select-
ing the next conversation to work on. Since an agent
can have many ongoing conversations, the way it se-
lects conversations reflects its priorities in coordination
and problem-solving. The mechanism we use to spec-
ify these policies is continuation rules. Continuation
rules perform two functions. First, they test the input
queue of the agent and apply the conversation class
recognition mechanism to initiate new conversations.
Second, they test the data base of ongoing conversa-
tions and select one existing conversation to execute.
Which of these two actions has priority (serving new
requests versus continuing existing conversations) and
which request or conversation is actually selected, is
represented in the set of continuation rules associated
to the agent. Our agent definition mechanism allows

S

e

the specification, for each agent, of both the set of con-
tinuation rules and the continuation rule applier.

3.7. Nested Conversation Execution

Nested conversation execution is a conversation ex-
ecution mode in which the current conversation of an
agent is suspended, another conversation is created or
continued, with the former conversation being resumed
when specified conditions hold (like termination of the
spawned conversation). Nested conversation execution
of this kind makes it possible to break complex proto-
cols into smaller parts that will be executed much like
coroutines in some programming languages. This is
important in applications where protocols are complex
and need to be broken into manageable pieces or when
an agent must dynamically switch focus of attention
due to various events.

4. In Context Acquisition and Debugging

Coordination structures for applications like supply
chain integration are generally very complex, hard to
specify completely at any time and very likely to change
even dramatically during the lifespan of the applica-
tion. Moreover, due to the social nature of the knowl-
edge contained, they are better acquired and improved
in an emergent fashion, during and as part of the inter-
action process itself rather than by off-line interview-
ing of users. which for widely distributed systems will
be hard to locate and co-locate anyway. Because of
this the coordination tool must support (i) tncremen-
tal modifications of the structure of interactions e.g.
by adding or modifying knowledge expressed in rules
and conversation objects, (ii) system operation with in-
completely specified interaction structures, in a manner
allowing users to intervene and take any action they
consider appropriate (iil) system operation in a user
controlled mode in which the user can inspect the state
of the interaction and take alternative actions.

We are satisfying these requirements by providing
a subsystem that supports in context acquisition and
debugging of coordination knowledge. Using this sys-
tem execution takes place in a mixed-initiative mode in
which the human user can decide to make choices, ex-
ecute actions and edit rules and conversation objects.
The effect of any user action is immediate, hence the
future course of the interaction can be controlled in this
manner.

Essentially, we allow conversation rules to be incom-
plete. An incomplete rule is one that does not contain
complete specifications of conditions and actions. Since
the condition part may be incomplete we don’t really

138

(def-conversation-rule ’cc-13

:current-state ’proposed

:received ’(ask :sender logistics)

:next-state ’proposed

;transmit ’(tell :receiver logistics
:sender 7agent
:conversation ?convn)

:incomplete t)

Figure 5. Incomplete conversation rule.

know whether the rule matches or not, hence the s
tem does not try to match the rule itself. Since t
action part may be incomplete, the system can r
apply the rule either. All that can be done is to

the user handle the situation. Interaction specifi
tions may contain both complete and incomplete ru
in the same time. Assuming the usual strategy of :
plying the first matching rule in the definition order,
can have two situations. The first is when a compl
rule matches. In this case it is executed in the norn
way. The second is when an incomplete rule is encot
tered (hence no previous complete rule matched).

this case the acquisition/debugging regime is trigger:
with the user in control over what to do in the resp
tive situation, as explained further on.

Figure 5 shows an example incomplete rule fr
the customer-conversation that allows a user intera
ing with the Customer agent to answer (indetermina
questions from the Logistics agent.

The rule is incomplete in that it does not spec
how to answer a question - the :transmit part o
contains the generic part of the response message.
is designed to work under the assumption that onc
question is received, the user will formulate the ansy
interactively, using the graphical interface provided
the acquisition tool. When the knowledge acquisit
interface is popped up, the user will have access to-
received message containing the actual question. Us
whatever tools are available, the user can determine
answer. Then, the user can create a copy of ther
and edit the transmitted message to include the .
swer. This rule can be executed (thus answering -
question) and then discarded. Alternatively, if the n
rule contains reusable knowledge, it can be retain
marked as complete and hence made available for :
tomated application (without bothering the user) n
time.

The facilities provided by this service can be ill
trated with examples from its graphical interface.
view the status of the conversation at the time
incomplete rule was encountered, the acquisition §

vice shows the finite state abstraction (like in figure
6). Here we have an instance of the logistics execution
process as seen by the Logistics agent.

The rules indexed on the current state (drawn as
a larger circle) can be checked for applicability in the
current context, with the resulting variable bindings
shown so that the user can better assess the impact
of each rule. The interface allows the user to perform
a number of corrective actions like moving a rule to a
different position or removing it from the conversation
class. It is also possible to invoke the rule editor, the
conversation class editor or the browser for classes and
rules allowing the user to inspect other classes and rules
in the system. The effect of any of these modifications
will be immediate. Finally, the user can leave the in-
terface and continue execution by applying a specified
rule.

5. Back to the Supply Chain

Going back to the supply chain, we implement the
supply chain agents as COOL agents and devise coordi-
nation structures appropriate for their tasks. Figure 7
shows the conversation plan that the Logistics agent ex-
ecutes to coordinate the entire supply chain. The pro-
cess starts with the Customer agent sending a request
for an order (according to customer-conversation
shown in figures 2 and 3). Once Logistics receives the
order, it tries to decompose it into activities like man-
ufacturing, assembly, transportation, etc. This is done
by running an external constraint based logistics sched-
uler Inside a rule attached on the order-received
state. If this decomposition is not possible, the process
ends. If the decomposition is successful, the conversa-
tion goes to state order-decomposed. Here, Logistics
matches the resulted activities with the capabilities of
the existing agents, trying to produce a ranked list of
contractors that could perform the activities.

If this fails, it will try to negotiate a slightly differ-
ent contract that could be executed with the available
contractors (state alternative-needed). If ranking
succeeds, Logistics tries to form a team of contractors
that will execute the activities. This is done in two
stages. First, a large team is formed. The large team
contains all ranked contractors that are in principle
interested to participate by executing the activity de-
termined previously by Logistics. Membership in the
large team does not bind contractors to execute their
activity, it only expresses their interest in doing the
activity. If the large team was successfully formed (at
least one contractor for each activity), then we move
on to forming the small team. This contains exactly
one contractor per activity and implies commitment of

139

order-received 22,26

c-pmposcd

27

success

Figure 7. Logistics execution conversation plan

the contractors to execute the activity. It also implies
that contractors will behave cooperatively by inform-
ing Logistics as soon as they encounter a problem that
makes 1t impossible for them to satisfy their commit-
ment. In both stages, team forming is achieved by sus-
pending the current conversation and spawning team
forming conversations. When forming the small team,
Logistics similarly discusses with each member of the
large team until finding one contractor for each activ-
ity. In this case the negotiation between Logistics and
each contractor is more complex in that we can have
several rounds of proposals and counter-proposals be-
fore reaching an agreement. This is normal, because
during these conversations contractual relations are es-

tablished.

In the small-team-formed state we continue with
other newly spawned conversations with the team
members to kick off execution. After having started
execution, we move to state contractors-committed
where Logistics monitors the activities of the con-
tractors. If contractors exist that fail to complete
their activity, Logistics will try to replace them with
another contractor from the large team. The large
team contains contractors that are interested in the
activity and are willingly forming a reserve team,
hence it is the right place to look for replacements
of failed contractors. If replacements can not be
found, Logistics tries to negotiate an alternative con-
tract (alternative-needed) with the Customer. To

;1 -HSUCCESS y
AR RR«T«LRN:LW RN ‘fgu
Dl e TR ‘*PELEIt&h-zg "
1 STABT \gﬂ g LR’“ o6 CRN 23

& EPH“%"P DECONPOSED ‘;

%*‘?’ SRSHEENS crir

%ﬁ%ﬁm Eﬁh«h

-12

@mmmﬁ N« -18
w«mw TPACTOR-NEEBED
R e TORS-LOMMITTED

%CI E‘i”

Dravr arcs J ctearimwel

“{. 4 ORDER-RECEIVED
1 ORDER-DECOMPOSED
- CONTRACTORS -RANKED

“%[PNQ;IK‘E -HEEDED
e LARGE-TEAM-FORMED RN 20

1 SMALL-TEAM-FORMED
-t CONTRACTORS -COMMITTED
-1 CONTRACTOR-NEEDED,
4 ALTEBNATIVE-NEEDED

.4 ALTERNATIVE-PROPOSED

-t ASKED-1
Gonversation nies in cwrent stals:

CRN-6

|CcAN-8

TEP XﬁT L

BEXXX cm?ersatiorr»mie CRN-T IN)J!PLETE *****
comment. s NIL .
lig%emctivmeu:timnfn HIL: P
 crrentostate = CONTRACTORS-RANKED
 recejved-test NIL : ;

¥

”rgcaived MIL =
R - 3
I)cleto Move nile at| . Meve rule at Maove rale at
< framitlassl! topinciasat] botlom e clasal; position isclasst :

Figure 6. Inspecting, editing and applying rules.

do that. Logistics relaxes various constraints in the
initial order (like dates, costs, amounts) and uses 1ts
scheduling tool to estimate fesability. Then, it makes
a new proposal to the Customer. Again, we may have
a cycle of proposals and counter-proposals before a so-
lution is agreed on. If such a solution is found, the
conversation goes back to the order-received state
and resumes execution as illustrated.

The typical execution of the above coordination
structure has one or more initial iterations during
which things go as planned and agents finish work suc-
cesfully. Then. some contractors begin to lack the ca-
pacity required to take new orders (again this is de-
termined by the local scheduling engine that considers
the accumulated load of activities) and reject Logistics’
proposal. In this case. Logistics tries to relax some con-
straints in the order (e.g. extend the due date to allow
contractors to use capacity that becomes available later
on). If the Customer accepts that (after negotiation)
then the new (relaxed) order is processed and even-
tually succeeds. We usually run the system with 5-8
agents and 40-60 concurrent conversations. The COOL
specification has about 12 conversation plans and 200
rules and utility functions. The Scheduler is an exter-
nal process used by agents through an APIL. All this
takes less than 2600 lines of COOL code to describe.
We remark the conciseness of the COOL representa-
tion given the complexity of the interactions and the
fact that the size of the COOL code does not depend on

140

the actual number of agents and conversations, showing
the flexibility and adaptability of the representation.

6. Conclusions

We believe the major contribution of this work is
advancing a complete language design, including high
level objects and control structures, of a practical ap-
plication independent language for describing and car-
rying out coordination in multi-agent settings. Previ-
ous theoretical work investigating related {11, 9] state
based representations has not consolidated the theoret-
ical notions into usable language constructs, making it
hard to use their ideas into applications. Related previ-
ous practical work [6, 10, 7, 12] has not produced truly
generic, application independent language structures
and constructs, making it difficult to reuse their expe-
rience. Agent oriented programming [13] is a notable
exception. Being able to consolidate generic concepts
and constructs into a language guarantees that devel-
opers of multi-agent systems will be able to reuse coor-
dination structures and will be supported in building
their own by the high level notions embodied in the lan-
guage. As another contribution, we believe that recent
approaches to agent communication like KQML [3], by
focusing exclusively on generic vocabularies of commu-
nicative actions, have neglected the planning and ex-
ecution dimension of the coordination task, requiring
users to implement it from scratch. With a language

like COOL, these aspects are well supported and the
expresiveness of KQML communicative actions can be
taken advantage of. Finally, the language provides the
representational foundation for tackling the important
problem of acquiring dynamically emerging coordina-
tion knowledge. We also report on this aspect in [2].

The coordination language has been now evalu-
ated on several problems, ranging from well-known
test problems like n-queens to the supply chain of our
TOVE virtual enterprise [4] and to supply chain coor-
dination projects carried out in cooperation with in-
dustry. In all situations, the coordination language en-
abled us to quickly prototype the system and build
running versions demonstrating the required behavior.
Often, an initial (incomplete) version of the system has
been built in a few hours enabling us to immediately
demonstrate its functionality. We have built models
containing hundreds of conversation rules and tens of
conversation plans in several days. Moreover, we have
found the approach explainable to industrial engineers
interested In modeling manufacturing processes.

Our major priority at the moment continues to be
gathering empirical evidence for the adequacy of the
approach to industrial applications and for that mat-
ter we are jointly working with several industries. In
one project for example, we are using the system to
produce hard data characterizing how various coordi-
nation schemes affect the responsiveness and robust-
ness of supply chains.

Since our approach is in an essential way manag-
ing workflow, we have also started addressing orga-
nizational workfiow modeling and enactment. Last
but not least, explaining the decisions and behavior
of multi-agent systems will become more and more im-
portant as we move into more complex applications.
Having explicit representations of coordination mech-
anisms forms the basis for providing explanations and
we are studying the issue as part of another joint effort
with industry.

7. Acknowledgments

This research is supported, in part, by the Manufac-
turing Research Corporation of Ontario, Natural Sci-
ence and Engineering Research Council, Digital Equip-
ment Corp., Micro Electronics and Computer Research
Corp., Spar Aerospace, Carnegie Group and Quintus
Corp.

References

(1] M. Barbuceanu and M.S. Fox. COOL: A Language

for Describing Coordination in Multi-Agent Systems.

141

[10]

(11]

[12]

(13]

In Proceedings of the First International Conference

- on Multi-Agent Systems(ICMAS-95), pp 17-24, San

Francisco, CA, june 1995.

M. Barbuceanu and M.S.Fox. Capturing and Model-
ing Coordination Knowledge for Multi-Agent Systems.
To appear in International Journal on Intelligent and
Cooperative Information Systems, 1996.

T. Finin et al. Specification of the KQML Agent Com-
munication Language. The DARPA Knowledge Shar-
ing Initiative, External Interfaces Working Group,
1992.

M. S. Fox. A Common-Sense Model of the Enter-
prise. In Proceedings of Industrial Engineering Re-
search Conference, 1993.

N. R. Jennings. Towards a Cooperation Knowledge
Level for Collaborative Problem Solving. In Proceed-
ings 10-th European Conference on Al, Vienna, Aus-
tria, pp 224-228, 1992,

N. R. Jennings. Controlling Cooperative Problem
Solving in Industrial Multi-Agent Systems Using Joint
Intentions. Artificial Intelligence, 75 (2) pp 195-240,
1995.

S. M. Kaplan, W.J. Tolone, D.P. Bogia, C. Big-
noli. Flexible, Active Support for Collaborative Work
with ConversationBuilder. In CSCW 92 Proceedings,
pp378-385, 1992.

T. W. Malone and K. Crowston. Toward an Interdisci-
plinary Theory of Coordination. Center for Coordina-
tion Science Technical Report 120, MIT Sloan School,
1991

F. vonMartial. Coordinating Plans of Autonomous
Agents, Lecture Notes in Artificial Intelligence 610,
Springer Verlag Berlin Heidelberg, 1992.

R. Medina-Mora, T. Winograd, R. Flores, F. Flores.
The Action Workflow Approach to Workflow Manage-
ment Technology. In CSCW 92 Proceedings, pp 281-
288, 1992.

S. R. Rosenschein and L. P. Kaebling. A Situated View
of Representation and Control. Artificial Intelligence
73 (1-2) pp 149-173, 1995.

A. Shepherd, N. Mayer, A. Kuchinsky. Strudel - An
Extensible Electronic Conversation Toolkit. In CSCW
90 Proceedings, pp 93-104, 1990.

Y. Shoham. Agent-Oriented Programming. Artificial
Intelligence 60, pp 51-92, 1993.

