Appeared in Intelligent Agents Il, LNAI 1037
Springer Verlag, 1996.

The Architecture of an Agent Building Shell

Mihai Barbuceanu and Mark S. Fox

Enterprise Integration Laboratory
University of Toronto,
4 Taddle Creek Road, Rosebrugh Building,
Toronto, Ontario, M5S 1A4

{mihai,msf}@ie.utoronto.ca

Abstract. The agent view provides a level of abstraction at which we
envisage computational systems that are able to interoperate globally
on “the Net”. It abstracts from aspects like the hardware or software
platforms of various components or the internal structure, methods or
processing of these components, focusing attention on how complex,
heterogenous, distributed and evolving systems can be built from
interoperable and reusable building blocks. From the practical point of
view, multiagent systems engineering requires the ability to reuse
abstract descriptions of system components, services, knowledge bases
and coordination structures. Based on this recognition, we are develop-
ing an Agent Building Shell that provides several reusable layers of lan-
guages and services for building agent systems: coordination and
communication languages, description logic based knowledge manage-
ment, cooperative information distribution, organization modeling and
conflict management. We are applying the approach to develop multi-
agent applications in the area of manufacturing enterprise supply chain
integration.

1 Introduction

The agent view provides a level of abstraction at which we construe computational
systems that interoperate globally on the entire “Net”. Such systems will link diverse
organizations, people, cultures on a single virtual platform. To build these systems we
need to abstract from aspects like the hardware or software platforms of various com-
ponents or the internal structure, methods or processing of these components, focus-
ing attention on how complex, heterogenous, distributed and evolving systems can be
built from interoperable and reusable building blocks. We call the computational enti-
ties that can operate at this level agents. For our purposes, we consider an agent to be
a piece of software that (/) is significantly autonomous and entrusted in performing
its functions and (2) operates on the entire Net by relying on application-independent
communication and interaction protocols with other “agents”.

From the practical standpoint, multiagent systems of this sort can not be efficiently
build without the ability to reuse abstract descriptions of system components, ser-
vices, knowledge bases and coordination structures. Based on this recognition, we are
developing an Agent Building Shell that provides reusable languages and services for

Legacy software

Coordination

Communication Legacy softwqre
Integration

Cooperative Conflict
information distribution management

Ontologiqs and insﬁan@iated
models: domain, Organization, self

Knowledge Management

Fig, 1. Archj tecture of the Agent Building She[y

Focusing on the agent leve] of system (de)com
number of Specific issues thag are not adequately dea]
Organization. Some of these are:

position brings into attention a
t with at other levels of System

* Agent interaction: How do agents Communicate? How are the semantic problems
related to conflicting or different meanings of the exchanged termyg and expres-

sions solyed? How do agents coordinate jp Jjoint work? How do agents model each
otherin a Cooperative Community?

. Representation: How do agents represent their loca] views of the domain? How is
the local view updated or Maintained as 5 consequence of Interaction? Hoyw do
agents revise thejr beliefs due 1o €xchanged information? How do agents share

models and how does the shared mode] change? How are common-genge issues,
e.2. time, action, Causality, handled?

Integratipn: How can pre-existing (legacy) ap,
and thus used jp agent communitieg?

context of our main application, the agent-based integration of the supply chain of
manufacturing enterprises. Because of that, we start by presenting this application
domain and then we continue with the layers of the architecture. In the end, we return
to the supply chain and show how the architecture supports its agent-based integra-
tion.

2 Integrating the Supply Chain

The supply chain of a modern enterprise is a world-wide network of suppliers, facto-
ries, warehouses, distribution centres and retailers through which raw materials are
acquired, transformed into products, delivered to customers, serviced and enhanced.
In order to operate efficiently, supply chain functions must work in a coordinated
manner. But the dynamics of the enterprise and of the world market make this diffi-
cult: exchange rates unpredictably go up and down, customers change or cancel
orders, materials do not arrive on time, production facilities fail, workers are ill, etc.
causing deviations from plan. In many cases, these events can not be dealt with
locally, i.e. within the scope of a single supply chain “agent”, requiring several agents
to coordinate in order to revise plans, schedules or decisions. In the manufacturing
domain, the agility with which the supply chain is managed at the (short term) tactical
and operational levels in order to enable timely dissemination of information, accu-
rate coordination of decisions and management of actions among people and systems,
is what ultimately determines the efficient achievement of enterprise goals and the
viability of the enterprise on the world market.

¢) Warehouse 1
¢) Warehouse 2

;
i Customer Logistics
E © Transportation 1

Plant 2 ¢ Design

) Marketing

L O
i Resource Manager
5 Scheduler s

plant level

Fig. 2. Multi-level supply chain.

We address these problems by organizing the supply chain as a network of cooper-
ating agents, each performing one or more supply chain functions, and each coordi-
nating their actions with other agents. Figure 2 shows a multi-level supply chain. At
the enterprise level, the Logistics Agent interacts with the Customer about an order.
To achieve the Customer’s order, Logistics has to decompose it into activities (includ-
ing for example manufacturing, assembly, transportation, etc.). Then, it will negotiate
with the available plants, suppliers and transportation companies the execution of
these activities. If an execution plan is agreed on, the selected participants will com-

mit themselves to carry out their part. If some agents fail to satisfy their commitment,
Logistics will try to find a replacement agent or to negotiate a different contract with
the customer.

At the plant level, a selected plant will similarly plan its activities including pur-
chasing materials, using existing inventory, scheduling machines on the shop floor,
etc. Unexpected events and breakdowns are dealt with through negotiation with plant
level agents or, when no solution can be found, submitted to the enterprise level.

Some of the major challenges for such an application include the criticality of a
good decomposition into agents (an issue for the future agent oriented analysis meth-
ods), the complexity of coordination knowledge requiring specialized tools for incon-
text capture and use, the importance of shared conceptualizations for semantically
unifying agent interaction, the importance of drawing the right line between what is
(or can be) automated and what should remain the responsibility of the human user in
a multi-agent system, the need for open architectures in which legacy or purpose built
applications can be easily integrated and used.

3 Communication, Coordination and Legacy Software Integration

These three functions, forming the outer layer of the architecture, are supported by
our COOrdination Language (COOL). Essentially, COOL is (i) a language for
describing the coordination level conventions used by cooperating agents (i1) a frame-
work for carrying out coordinated activities in multiagent systems (iii) a tool for
design, experimentation and validation of cooperation protocols and (iv) a tool for
incremental, in context acquisition of cooperation knowledge.

3.1 Communication

COOL has a communication component that implements an extended version of the
ARPA sponsored KQML language [6]. Essentially, we keep the KQML format for
messages, but we leave freedom to developers with respect to the allowed vocabulary
of communicative action ’[ypes1 (called performatives in KQML). Also, we do not
impose any content language. Our implementation provides TCP/IP supported trans-
port and services like persistent storage of received KQML messages, visual tools for
message browsing, composition, sorting into folders and general pattern matching.

3.2 Coordination

The purpose of the coordination layer of COOL is to describe, execute, validate and
acquire coordination protocols, i.e. shared conventions about agent interaction.
COOL provides constructs for the following entities.

1. As long as KQML performatives do not have declarative semantics, this raises no problem,
as we work with the operational semantics provided by COOL. When declarative semantics
will be available, we will restrict to those performatives that have such semantics.

Agent: a programmable entity that can exchange messages, change state and perform
actions. Agents carry out conversations with other agents or perform local actions
within their environment. Agents exist in local or remote environments (see bellow).

Agent execution environment. Its purpose is to “run” agents by managing message
passing and scheduling agents for execution. Environments exist on different sites
(machines) and a directory service makes message transmission work just the same
among sites as within sites. The environment also provides a wealth of tools for visual
manipulation (browsing, editing, system set-up, animated execution).

Generic conversation descriptions (conversation classes). These are rule based
descriptions of what an agent does in certain situations (for example when receiving
messages with given structure). A conversation class thus specifies the available con-
versation rules, their interpreter (executor) and the local data-base that maintains the
state of the conversation. The latter consists of a set of variables whose values are
manipulated by conversation rules. Since rules are indexed on the finite set of values
of a particular variable (the current-state), conversations admit a finite state machine
representation that is often used for visualization purposes. Figure 3 shows the con-
versation class governing the Customer’s conversation with Logistics in our supply
chain. Arrows indicate the existence of rules that will move from one state to another.
Figure 4 shows the associated transition diagram of this conversation class. Each con-
versation class describes a conversation from the viewpoint of an individual agent (in
figure 3 the Customer). For two or several agents to “talk”, the conversation classes
governing their interaction must generate sequences of messages that the others’ con-
versation classes can process.

(def-conversation-class ‘customer-conversation

:name ‘customer-conversation

:content-language ‘list

:speech-act-language ‘kqml

:initial-state “start

‘final-states “(rejected failed satisfied)

:control “interactive-choice-control-ka

:rules “((start cc-1) (proposed cc-13 cc-2) (working cc-5 cc-4 cc-3) (counterp
cc-9 cc-8 ce-7 cc-6) (asked cc-10) (accepted cc-12 cc-11)))

Fig. 3. Customer-conversation

Conversation rules describe the actions that can be performed during conversations.-
For example, an agent in a given state receives a messages of specified type, does
local actions (e.g. updating local data), sends out messages, and switches to another
state. Figure S illustrates a conversation rule from the customer-conversation.

Error recovery rules specify how incompatibilities among the state of a conversation
and the incoming messages are handled. Such incompatibilities can have many causes
- message delays, message shuffling, lost messages, wrong messages sent out, etc.
Error recovery rules deal with this by performing any action deemed appropriate,

such as discarding inputs, initiating clarification conversations with the interlocutor,
changing the state of the conversation or just reporting an error.
asked

]

counterp rejected

start proposed

working accepted failed

rej ected satisfied

Fig. 4. Finite state representation of customer-conversation

(def-conversation-rule "cc-3
:current-state ‘working
:received ’(counter-propose :sender logistics :content ?c)
:next-state ‘counterp
:incomplete nil)
Fig. 5. Conversation rule cc-3.

Actual conversations instantiate conversation classes and are created whenever agents
engage in communication. Conversation selection is the process of selecting a con-
versation class that will handle a conversation with an agent that has sent a message.
We do this by matching an expressed :intent of the message with the :intent-test in
the existing conversations. Suspending a conversation occurs as a consequence of the
fact that an agent may shift its attention from one conversation to another. A sus-
pended conversation can be resumed when certain events occur, such as the more pri-
oritar conversation being terminated. This brings multiple conversation management
capabilities allowing agents to carry out several conversations in the same time, by
selecting the next conversation to carry out and the conditions under which conversa-
tions can be suspended or resumed.

Continuation rules specify how agents accept requests for new conversations or select
a conversation to continue from among the existing ones. Continuation rules perform
two functions. First, they test the input queue of the agent and apply the conversation
class recognition mechanism to initiate new conversations. Second, they test the data
base of ongoing conversations and select one existing conversation to execute.

3.3 Legacy Software Integration

To integrate legacy software, we simply employ the above conversation mechanism in
which we have rules that, rather than checking input messages and sending out
responses, activate the legacy application, communicate with it and reason about its
operation. This can be done in several ways, ranging from batch execution of an
application (by preparing input data, spawning its process, reading the produced out-
puts) to interacting through its API functions.

3.4 Incontext Acquisition of Cooperation Knowledge

Coordination protocols for supply chain integration are not only very complex but
often impossible to specify completely. Rather than requiring developers to get the
protocols right from the beginning, we allow conversation rules that are incomplete
(do not contain complete conditions, actions, messages, etc.). Such rules are handled
by turning control to the user to decide exactly which rule is executed and how. Dur-
ing use, users can decide to augment incomplete rules with more knowledge, ulti-
mately making some of them complete and automatically executable. This approach
is provided for both continuation and conversation rules. The support includes visual
interfaces in which users can try out various rules, inspect and modify the stati of con-
versations, data bases, message queues, etc., perform rule specified or user required
actions, etc. This provides a unified debugging, development and acquisition environ-
ment for cooperation knowledge that has proven invaluable when programming com-
plex multiagent interactions. For illustration, figure 6 shows an incomplete rule from
the customer-conversation that allows a user interacting with the Customer agent to
answer (indeterminate) questions from the Logistics agent.

(def-conversation-rule ‘cc-13

:name ‘cc-13

:current-state ‘proposed

:received “(ask :sender logistics)

‘next-state “proposed

:transmit ‘(tell :receiver logistics :sender ?agent :conversation ?convn)
:incomplete t)

Fig. 6. Incomplete conversation rule.

4 Description Logics for Knowledge Management

Having described the interaction mechanisms provided by the shell, we now switch to
a bottom-up presentation of the other layers. We start with the knowledge manage-
ment services based on description logics. Description logic languages (or termino-
logical languages) integrate aspects of object-oriented and logic representations {4,5].
They express knowledge in a modular fashion, using inheritance and hierarchical
organizations and rely on well-defined declarative semantics to describe the meaning
of constructs. For this work, we use our own description logic language, called
MODEL [2], that provides the usual concept-forming operators - conjunction, value
restrictions, number restrictions - roles and subroles, disjointness declarations, primi-
tive and defined concept specifications. The language’s T-Box provides the usual ser-
vices of constructing the complete form of concepts and automated classification
based on subsumption checking. The language’s A-Box is essentially a constraint
propagation engine that makes instances conform to the various constraints asserted
about them. It uses a propositional representation of instances and roles, a boolean
constraint propagation TMS [1] and a number of other services including advanced
queries and rules.

(concept activity (:and (:all involved-resource resource)(:the state (:oneof
enabled active dormant)))

(role involved-resource (:domain activity)(:range resource))

(role produce(:and involved-resource))

(role consume(:and involved-resource))

(concept black-hole-activity (:atleast 1 consume)(:atmost 0 produce))

(concept miracle-activity (:atleast 1 produce)(:atmost 0 consume))

(concept normal-activity (:atleast 1 produce)(:atleast 1 consume))

a - terminology

(i) Complete concepts with implied descriptions. E.g. (:atleast 2 involved-rer-
source) for normal-activity.

(i1) Organize descriptions in a subsumption lattice, where e.g. normal-activity,
black-hole-activity, miracle-activity are subsumed by activity (not repre-
sent explicitly).

(iii) Check existence of activities subsumed by black-hole-activity or miracle-
activity - these don’t make sense in the domain.

b - T-Box actions

Assert: produce(Al Bolt [1'7], consume(Al Steel)[3'11]

Propagate: activity(Al)[7, activit%(Az)[3,11]

Recognize: normal-activity (A1)l

Assert clause:

normal—activity(Al)[3'7]<- produce(Al Bolt)ll- 71, consume(A1 Steel)l® 111

¢ - A-Box actions

Fig. 7. Example and services provided by the description logic

Figure 7 shows an example terminology and illustrates how this is processed by
the assertional and terminological services of the language. Especially note the use of
temporal reasoning at the assertional level (superscripts indicate time intervals during
which propositions are believed). Accounts of our approach to temporal reasoning in
description logics are available elsewhere [3].

S Organizational Modeling

Agents can not operate autonomously unless they have an understanding of the envi-
ronment they are in. This understanding consists of models of the other agents in the
environment, the roles they play, the goals they are pursuing, the actions they are
empowered to execute, the information they are interested in, the services they can
provide, the established communication and authority channels, etc.

To endow our actual agents with this capability we have developed an organiza-
tion ontology that provides the necessary distinctions for describing organizations and
agents. Actual organizational models built with this terminology are used by agents
to: (i) retrieve the most appropriate coordination/conversation model, (ii) carry out
conflict management and negotiation, (iii) retrieve recipients of volunteered informa-
tion, (iv) represent themselves as part of the organization.

We view an organization as a collection of organization agents that work to satisfy
shared goals. Agents play various organizational roles, by which they assume respon-
sibility for organizational goals, and use communication and authority links to dis-
tribute activity among themselves. The organization model defines what is the range
of authority of an agent and allows conflicting agents to negotiate in order to resolve
the conflicts [8].

6 Cooperative Information Distribution

Cooperative information distribution allows an agent to distribute information to
other agents based on the content of the information and the expressed interests of
agents. The essential capability needed to perform this function is being able to prove
that a piece of information satisfies an expressed interest. This proof is performed by
the classification and recognition services of the description logic language.

In;formation

Disuibuﬁon
Agent

a - Information Distribution Agent servicing functional agents

Topic of interest of Agent-2:
(concept heavy-component
(-and component (:gt weight 5000))),

that is “any component whose weight is greater than 50007

(subscribe :content (stream-about :content(query heavy-componentlalitime
march-april 94])))

Topic of interest of Agent-3:
(concept weight-change
(-and change (:the changed component) (:gt difference 100))),

that is “any change in weight such that the difference between the new and the cld
value is at least 100”

(subscribe :content (stream-about :content (query weight—change[“’lnytime
spring 94])))

b - Topics of interest and subscriptions

Agent-1 to IDA:

(achieve :content (part p-111))
(achieve :content (part-of p-111 ¢c-12))
(achieve :content (part-of p-111 ¢-13))
(achieve :content (part c-12))
(achieve :content (part c-13))

(achieve :content (weight c-12 2700)L:starting feb 94]

(achieve :content (weight c-13 3400)[starting jan 941y .

IDA inferences: (component p—lll?, gweight p-111 6100)lstarting feb 94]
(heavy-component p-111)[starting feb 4]

IDA to Agent-2: (tell :content (heavy-component } .

Agent-1 to IDA: (deny :content (weight ¢-12 2700)lstarting april 94hy (3chieve
:content(weight c-12 1000)[starting april 941y

IDA to Agent-2: (deny :content (tell :content (heavy-component p-
111)[mar -april 94]))

IDA to Agent-3: (tell :content (weight-changed c-12 1000)), (tell :content
(weight-changed p-111 1000))

Fig. 8. Content-based information distribution scenario.

_111)[march—april 94]

Figure 8 illustrates an information distribution scenario in which an agent (IDA)
performs information distribution functions by routing information among several
agents according to their interests. The scenario uses KQML communication primi-
tives. Note the belief revision function performed by the IDA when Agent-1 retracts
some information and asserts something different. The IDA sends a denial message to
Agent-2 who received information that is no longer valid. We view content-based
information distribution as providing the function of a “nervous system” of the agent,
by continuously distributing and collecting information that will feed the higher cog-
nitive levels.

Translation. Cooperating agents often conceptualize the world according to par-
tially distinct ontologies, reflecting the different perspectives agents have. This
reduces the bandwidth of communication and requires that agents do more work indi-
vidually to derive the information they need. Information distribution functions can
help by performing translation functions that e.g. can make knowledge implicit in one
ontology explicit in another, or can organize knowledge in different manners (e.g.
introducing/removing intermediate concepts).

Shared model change. Agents make decisions assuming that whatever information
has been communicated to them continues to be true unless explicitly invalidated. In
other words, agents expect to be notified about any changes of previously received
information and will assume that no change occurred if not notified. The solution we
support is based on having agents send to the IDA justifying clauses describing how a
belief of interest to the agent (consequent) depends on other beliefs (antecedents) that
can be modified inside the IDA. When all antecedents become true, the IDA sends the
consequent belief to all the interested agents. When any of the antecedents becomes
false, the IDA sends denial messages wrt the consequent. In this way, any agent is
safe to assume that any received belief not explicitly denied is still valid. In [3] we
present detailed illustrations of the translation and shared model change management
techniques we employ.

7 Conflict Management with the Credibility/Deniability Model

Groups of agents in a multi-agent reasoning system can often hold incompatible
beliefs in the following sense:

- Agent-1 believes p and communicates it to Agent-3

- Agent-2 believes q and communicates it to Agent-3

- Agent-3 believes p because it was communicated by Agent-1, q because it was
communicated by Agent-2 and has local knowledge stating that p&q -> false.

Often, the agent that encounters such a contradiction has to eliminate it by retract-
ing some current belief that supports either p or q. This section addresses the issue of
how to determine which of the possible supporting beliefs to retract to reinstall con-
sistency.

7.1 Credibility and Deniability

Consider an organization where the Marketing Agent has determined that for a new
automotive product a v6 engine would sell better. Hence marketing will sent the Man-
agement Agent a message telhng that the engine should be a v6: (véengine
e])lstarting 13 marc . From different requlrements the Design Agent has
determined that only a 14 engine can be used: (I4engine e1 [St3rting 14 march
941 . Using domain knowledge that the v6engine and l4engine concepts are disjoint,

the Management Agent will derive a contradiction.

The conflict management service tries to remove this contradiction by considering
two properties of information, credibility and deniability.

Credibility is defined based on a postulated quasi order of agents in given roles.
Any belief originating from an agent a in role rl is more credible than a belief origi-
nating from agent b in role 2 iff (b 12) <, (arl), where “<.“ is the quasi order. Credi-
bility is an irreflexive and transitive order relation. We can assign1 to each belief b a
numerical value n(b) such that for any two comparable beliefs bl and b2, bl <, b2
<> n(bl) < n(b2).

Deniability. Assuming that Marketing was first to determine that the engine must
be a v6, it might have sent this information to the Purchasing Agent. The Purchasing
Agent ordered v6 engines from another company. Later, Design discovered that the
engine must be a 14. If the Design view is accepted, Purchasing may have troubles in
cancelling the order (paying penalties, etc.). This shows that information that has been
used for decision-making may be costly to retract later because of the cost of undoing
previous decisions. We define the undeniability of consumed information as a mea-
sure of the cost to retract it (high undeniability means high costs). We often use deni-
ability as the inverse of undeniability. Undeniability (or deniability) is determined by
the consumers of information. We assume that agents are honest when assessing
undeniability and do not use this to minimize their own workload. Figure 9 illustrates
the types of beliefs distinguished among in conflict management.

Suppose we have determined a set {p;} of premises which supports a p&g=>false
contradiction (in the sense that each p; is part of an implication chain supporting either

1. By assigning O to the least credible beliefs and then incrementing the value for
those directly preferred to these, a.s.o.

p or q). To each p; we can attach: (i) a credibility measure - the numeric credibility
previously introduced and (ii) an undeniability measure - derived from the sum of
deniability costs of all propositions that would have to be retracted if p; is retracted.

AGENT

p1, q1 - internally created by agent
P2, 92 - imported (with credibility)
p,q - derived by agent
pl, p, q2 - supplied to other
agents for consumption

Undeniability(p1):ConsumerCCo osrtl(s% %1)1 * Cost(p) 2 false

Undeniability(q2)=ConsumerCost(q2)
p&q=> false (contradiction)

{p1, p2, q1, q2} = conflict set

p2

Fig. 9. Types of beliefs in conflict management.

A high credibility means that the proposition is more difficult to retract since a
higher competence has to be contradicted. A high undeniability means that the propo-
sition is more difficult to retract because the costs of retraction incurred upon con-
sumer agents will be great. We can represent these two values in a diagram called a c-
u space, as illustrated in figure 10.

Propositions from the c-u space that have both low credibility and low undeniabil-
ity - as defined e.g. by some threshold values ¢, and u, - are easy to retract because
they are not credible enough and do not incur significant costs. Propositions that have
high credibility and high undeniability are hard to retract exactly for the opposite rea-
sons. A measure of both credibility and undeniability is the distance r to the origin. If
a proposition with high credibility and/or undeniability is considered for retraction,
retraction must be negotiated with the producer and/or consumers.

undeniability
A c<cq C=Ct c>Ct
Negotiate Negotiate with
wit] producer wut
consumers and consumers
u=ut
Negotiate with
No producer
negotiation u<ut

credibiity T

Fig. 10. Negotiation regions in the c-u space.

Figure 10 shows the regions defined by these thresholds in the c-u space. [14] and

[15] are examples of work exploring negotiation as a means to mediate among con-
flicting agents.

7.2 The Model of Contradiction Removal
Given: a contradiction of the form: p&g=>false

1. Determine the support set of p, that is the set of premises p is derived from, and
the support set of g, that is the set of premises g is derived from. Together, these two
sets form the conflict set.

2. Group the propositions from the conflict set into 4 sets corresponding to the 4
negotiation regions. In each region, order the component propositions in increasing
order of the value of r = (a+i?)1/ 2

3. Considering the 4 regions in the order: (1) no-negotiation, (2) negotiation-with-
producer, (3) negotiation-with-consumers, (4) negotiation-with-both, take each prop-
osition in order and try to retract it:

- If the premise falls in the no-negotiation region, retract it

- If the premise falls into a negotiation region, negotiate with the required agents.

4. Retract the first proposition that passes the above tests and check if after retrac-
tion the contradiction can be rederived. If so, repeat the procedure. If no proposition
can be retracted, report failure.

Initially, a conflict is discovered by an agent that derives a contradiction. The con-
flict management model then retracts one (or more) premises that led to the contradic-
tion. Since the retracted premises can be themselves beliefs held by some other
agents, their retraction may trigger other retractions in the agents holding them. These
propagated retractions are performed using the same model - hence we have a propa-
gated chain of retractions. Further work is needed to understand what to do if these
chains are circular or too long.

This model of belief revision has three main advantages. First, it is accurate
because the selection of the retracted belief is based on the views of all involved par-
ties at the moment the contradiction is detected. Second, this means that the selection
implicitly relies on domain knowledge and on the current state of the global problem-
solving effort. Third, by estimating costs and identifying negotiation regions, the
model takes advantage from situations in which negotiation may not be required or in
which a smaller amount of negotiation may suffice.

8 Back to the Supply Chain

Going back to the supply chain, we implement the supply chain agents as COOL
agents and devise coordination protocols appropriate for their tasks. Figure 11 shows
the protocol that the Logistics agent executes to coordinate the entire supply chain.
The process starts with the Customer agent sending a request for an order (see figures
3 and 4). Once Logistics receives the order, it tries to decompose it into activities like
manufacturing, assembly, transportation, etc. This is done by applying a constraint
based logistics scheduler. If decomposition is not possible, the process ends. Other-
wise, Logistics matches the resulted activities with the capabilities of the existing
agents, trying to produce a ranked list of contractors that could perform the activities.

alternative-proposed

alternative-needed

é find-contractor-conv
‘/'S)nt dctor-needed

/ team-formed contractors-committed success

contractors-
ranked

Fig. 11. Logistics execution protocol

If this fails, it will try to negotiate a slightly different contract that could be exe-
cuted with the available contractors (state alternative-needed). If ranking succeeds,
Logistics tries to form a team of contractors that will execute the activities. This is
done in state contractors-ranked. In this state, Logistics starts conversations with each
contractor ranked for each activity, in the ranking order. The conversation shown in
figure 11 is suspended and Logistics starts a team forming conversation with the
potential contractors. If team forming is successful (one contractor found for each
activity), then we move to state ream-formed. Here, a new conversation with the team
members kicks off execution. After having started execution, we move to state con-
tractors-committed where Logistics monitors the activities of the contractors. If con-
tractors exist that fail to complete their activity, Logistics will try to replace them with
another contractor from the ranked list (state contractor-needed). If that is not possi-
ble, an alternative contract is negotiated (alternative-needed).

In order to generate alternative contracts, Logistics relaxes some constraints from
the initial order (for example moves a due-date further, changes a price etc.). For
those agents using the constraint-based scheduling engine, this requires constraint
relaxation and iterative use of the constraint-based scheduler, until the alternative is
accepted by the customer. Any other tools, like databases, calendar management,
project management, etc. are equally available to agents and humans in this process.

9 Related Work

ARCHON [9] is a general purpose architecture used to develop agent systems in real
world domains like electricity distribution and supply. It supports large grain, loosely
coupled, and semi-autonomous agents. In ARCHON cooperation knowledge had to
be manually coded into a general representation language. We are trying to improve
on that by coming with higher level specialized tools like COOL. We continue this

ing, acquiring and applying it to various tasks. Using these fools we have build CoOop-
erating agents in the framework of the Integrated Supply Chain, a major application
area in manufacturing enterprise integration.

1 Acknowledgments

This research is Supported, in bart, by the Manufacturing Research Corporation of
Ontario, Natural Science and Engineering Research Council, Digital Equipment
Corp., Micro Electronics angd Computer Research Corp., Spar Aerospace, Carnegije
Group and Quintys Corp.

2. M. Barbuceanu. Models: Toward Integrated Knowledge Modeling Environments,
Knowledge Acquisition 5, pp. 245-304, 1993.

3. M. Barbuceanu and M.S.Fox. The Architecture of a Generic Agent for Collabora-
tive Enterprises. EIL Working Paper, nov. 1994,

4. A. Borgida, R.J. Brachman, D.L. McGuiness, L. Resnick. CLASSIC: A Structural
Data Model for Objects. In Proceedings 1989 ACM SIGMOD International Con-
ference on Management of Data, pp. 59-67, 1988.

5. R.J. Brachman, J.G. Schmolze. An Overview of the KL-ONE Knowledge Repre-
sentation System. Cognitive Science 9(2), pp. 171-216, 1985.

6. T. Finin et al. Specification of the KQML Agent Communication Language. The
DARPA Knowledge Sharing Initiative, External Interfaces Working Group, 1992.

7.M. S. Fox. A Common-Sense Model of the Enterprise. In Proceedings of Industrial
Engineering Research Conference, 1993.

8. M. S. Fox, M. Barbuceanu, M. Gruninger. An Organisation Ontology for Enterprise
Modeling: Preliminary Concepts for Linking Structure and Behavior. In Proceed-
ings of the Fourth Workshop on Enabling Technologies, Infrastructure for Collabo-
rative Enterprises, IEEE Computer Society Press, 1995.

9.N. R. Jennings. Controlling Cooperative Problem Solving in Industrial Multi-Agent
Systems Using Joint Intentions. KEAG Tech. Report 93/25, Dept. of Electronic
Engineering, Univ. of London, 1993,

10. D. Kuokka, J. McGuire, J. Weber, J. Tenenbaum, T. Gruber, G. Olsen. SHADE:
Knowledge Based Technology for the Re-engineering Problem, Technical Report,
Lockheed Artificial Intelligence Center, 1993.

11. L. Gasser, C. Braganza, and N. Herman. MACE: A Flexible Testbed for Distrib-
uted Al Research. In M.N. Huhns (ed), Distributed Artificial Intelligence, Pitman -
Morgan Kaufman, pp 119-152, 1987.

12. M. R. Genesereth, R.E. Fikes. Knowledge Interchange Format, Version 3.0, Ref-
erence Manual, Computer Science Department, Stanford University, Technical
Report Logic-92-1, 1992.

13. Y. Shoham. Agent-Oriented Programming. Artificial Intelligence 60, pp 51-92,
1993.

14. K. Sycara. Multi-agent compromise via negotiation. In Les Gasser and Michael N.
Huhns, editors, Distributed Artificial Intelligence, Volume II, pp. 119-137, Pitman
Publishing, London, 1989.

15. G. Zlotkin, J. S. Rosenschein. Negotiation and task sharing among autonomous
agents in cooperative domains. In Proceedings of IJCAI-89, pp. 912-917, Detroit,
MI, 1989.

