
Building Agents for the Customer Service Front

Mihai Barbuceanu, Mark S. Fox, Lei Hong, Yannick Lallement and Zhongdong Zhang

Novator Systems Ltd.
364 Richmond Street West, Suite 300

Toronto, M5V 1X6, Canada
{mihai, msf, lhong, yannick, zhang}@novator.com

Abstract
AI has the potential to play an important role in the
customer service field. By leveraging the high bandwidth
of natural language customers will be able to state their
intentions directly instead of searching for the places on the
Web site that may address their concern. By using a
planning system to find the solution to the problem we
increase the confidence that a resolution satisfactory for
both the customer and the company will be found, if one
exists. Being able to converse guarantees that needed
information will be acquired from customers and relevant
information will be provided to them in order for both
parties to make the right decision. The net effect is a more
frictionless interaction process that will improve customer
experience and make businesses more competitive on the
service front.

Introduction

As companies optimize their production and supply chain
processes, customer service emerges as the new
competitive battleground. Customer service is currently a
manual process supported by costly call center
infrastructures. Its lack of flexibility in adapting to
fluctuations in demand and product change together with
the staffing and training difficulties caused by massive
personnel turnovers often result in long telephone queues
and frustrated customers. As it generally costs 5 times
more to acquire a new customer than to keep an existing
one, frustrating a customer is hardly an option for
anybody.

How can AI help in addressing this problem? For several
years we have built a domain independent AI platform for
creating conversational customer service agents that use a
variety of natural language understanding and reasoning
methods to interact with customers and resolve their
problems. We have or are applying this platform to
customer service applications like technical diagnosis of
wireless service delivery problems, product
recommendation, order management, quality complaint
management and sales recovery, among others. The

Copyright © 2003, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

resulting solutions and the lessons learned in the process
are the subject of this paper.

Understanding, Interaction and Resolution
Compared to the “newspaper page” model of web sites
where people have to navigate the site, find the
information they need and make the ensuing decisions on
their own, natural language interaction combined with AI
based reasoning can change the interactive experience
profoundly (Allen et al. 2001). The high bandwidth of
natural language allows the user to state their intentions
directly, instead of searching for a place in the site that
seems to address their problem. Having a reasoning
system that plans (in an AI sense) for achieving the user
goals increases the certainty that a solution will be found
that can satisfy both the user and the company. Being able
to converse guarantees that the relevant information will
be acquired from the user and provided to the user if and
when needed in order for both parties to make the right
decisions.

Ideally, a conversational customer interaction agent
should be able to understand language, converse and
resolve problems with high accuracy within its main area
of competence, and degrade gracefully as we depart from
this area. Human users react with more displeasure when
the agent exhibits complete failure to understand than
when it shows partial understanding or even an effort to
understand. They also assume that an agent should know
about issues that are common-sensically related to its main
competence area. Therefore, graceful degradation must be
provided, supported by a critical minimum of common
sense knowledge around the main competence area.

The Internet currently reaches a variety of touch points
through which the agent must be available, with the web,
email and phone being the most important. Consequently,
a user must be able to achieve the same goals with the
same results through any of these channels. State changes
performed on one channel (e.g. changing an order) must
be reflected on the other channels. As some interactions
are easier on some channels than on others, the agent is
responsible for planning and carrying out conversations
such that it uses the advantages and avoids the pitfalls of
each channel in part.

IAAI 2003 35

Overall Architecture

How do we achieve these objectives? An interactive
customer agent built on our platform has the architecture
shown in figure 1. The example illustrated is about games
that are subscribed on-line and downloaded through the
air for use on Java enabled cell phones.

Figure 1. Overall Agent Architecture

The user input (from no matter what channel) is first
converted into an internal message format. From this,
Natural Language Understanding produces a set of
semantic frames that represent the user’s intention and
contain relevant information extracted from the input.
These frames are passed to the Conversation Management
module. This identifies whether the issue can be answered
immediately, or a longer conversation needs to be
initiated. In the latter case, a workspace is created for the
Interaction Planner, consisting of a goal stack and a
database. The goal stack is initiated with the starting goal.
The planner uses a hierarchical task planning method to
decompose goals into sub-goals and perform backtracking
search to satisfy them. If the user complains about not
being able to use such a game, the planner will create sub-
goals for applying a diagnosis method to determine the
cause. Normally the investigation would start with
obtaining user account information from the backend and
determining the conditions under which the incident
occurred. The Business Reasoning module performs
domain inferences like determining that the user’s device
must be J2ME enabled and applies business policies like
verifying content rating restrictions on user accounts (in

the process accessing account information from the
backend). In the figure, the incident location was not
provided in the input, thus has to be asked for. The Ask-
incident-location method used for the Establish-
incident-location goal achieves this by requesting
the Natural Language Generation module to create the
question for the user. At this point, the user can answer
the question or diverge and create another conversation
topic by asking a different question. Dialogue
management policies in the agent allow such diversions to
be handled in various ways.

Understanding Natural Language

The need for both breadth and depth of interaction has led
us to integrating two natural language understanding
methods. The first, conferring high accuracy in limited
domain segments, is analytic. It relies on a staged
approach involving tokenizing, limited syntax analysis,
semantic analysis, merging and logical interpretation. The
second is a similarity based method that computes the
degree of similarity between a question and a set of
possible answers, returning the answers that have highest
similarity. This is used to provide general answers from an
arbitrary set of pre-existing documents. The two methods
can be used in combination based on a unique domain
ontology.

Domain Ontology
An ontology is a conceptualization of an application
domain shared by a community of interest, in our case
including at least the vendors and the customers of the
products the agent is servicing.

Figure 2. Classified concept lattice.

We use description logics (Borgida et al. 1989) to
represent ontologies. Description logics provide automated
concept classification. Figure 3 shows a very small,
classified product lattice, containing disjoint sub-concepts
(that do not have common instances, marked with an “x”
in the figure, e.g. vegetable and meat). Classification
is valuable for ontology construction as it enforces and
clarifies the semantics of concepts by making explicit the
logical consequences of their definitions.

x

x

Product

Beverage
Vegetable

Meat

Soy Milk
Beef Pork Fish

Bottom

Top

Web Email Phone

Channel
Interface

Conversation
Management

Natural
Language

Understanding

Natural
Language
Generation

Interaction
Planner

Business
Reasoning

Adapter

User: “I bought a
bunch of games for
my kid, but
yesterday he
couldn’t use any”

Usage-complaint
Application: game
Date: 17 Nov 02

Get account info

Account: 123234
Activity: …

Goal: Establish-
incident-location
Method: Ask-
incident-location

Infer device =
J2ME-enabled

Agent: “Where
were you when
you experienced
these
problems?”

36 IAAI 2003

Knowledge Based Language Understanding
By this we mean a first principles method that uses
linguistic and domain knowledge to understand natural
language expressions. Our method processes the linguistic
input by applying a sequence of steps as follows:
Tokenization, Syntax Analysis, Semantic Analysis,
Merging and Logical Interpretation. Here’s what each
step does.
Tokenization. Words are first tagged with part of speech
information (noun, verb, adjective, adverb, preposition,
determiner, as well as the tense and the singular or plural
form). Regular grammars are applied to recognize URL-s,
emails, phone number, dates, addresses, person and
institution names, and a few others.
Syntax Analysis. Syntax analysis is limited to the
recognition of structures that can be reliably recognized.
Based on the Fastus approach (Applet et al. 1993), we
only recognize noun groups and verb groups. The noun
group consists of the head noun of a noun phrase together
with its determiners and modifiers. For example “the new
game” or “2 pounds of brown spotted Bonita bananas”.
The verb group consists of a verb together with its
auxiliaries and adverbs. For example, the group for the
verb “deliver” in “2 pounds of brown spotted bananas
were delivered late yesterday evening”. Verb groups are
tagged as active, passive, infinitive, gerund or negated
(e.g. “were not delivered”). Noun and verb groups are
scored in a manner that increases with the percentage of
the input they account for. This biases the system towards
preferring longer subsuming phrases to the shorter ones.
However, no phrase is discarded.

Semantic Analysis. The next step is to recognize
instances of ontology concepts. At the topmost level, the
ontology is divided into Objects, Events, Attributes, Roles
and Values. Objects have single or multiply valued
attributes, while events have single or multiply valued
roles. Instances of these concepts are recognized by
semantic patterns. Semantic patterns rely on the presence
of denoting words as well as on verifying constraints
among entities. The denoting words are sets of words or
expressions that, if encountered in the linguistic input,
imply the possible presence of that concept. The denoting
words and expressions are inherited by sub-concepts. An
object or event can be implied directly, by finding any of
its denoting words, or by finding denoting words that
imply any of its sub-concepts in the classified ontology.
Figure 3 illustrates a semantic pattern for the produce
concept and the way the fragment “the large white spuds”
is recognized as denoting an instance of produce. The
particular ObjectPattern shown simply requires a noun
group whose head is a word that denotes (through the
inheritance based denoting words mechanism) the concept
produce. Fragments like “the fatty Atlantic salmon” or “a
box of President’s Choice soy milk” would be recognized
as produce-s in exactly the same way by this pattern.

Recognized objects and events can be used in patterns to
recognize further objects and events. For example, the
EventPattern in fig. 3 is applicable to recognize complaints
of the type “<produce> is <not fresh>” or “is <not fresh>
<produce>” (because the seq predicate allows both of these
orders). The certainty of an object or event recognized is
computed by a function monotonic in the certainty of the
components and the certainty coefficient of the used
pattern.

Figure 3: Semantic analysis and merging.

Merging. After applying the patterns in the semantics
stage, the merging stage combines together objects and
events into higher order aggregates. In figure 3, a quality-
complaint event (not containing the role date) and a date
object are merged into a new quality-complaint event. The
new quality-complaint event contains the union of the roles
and attributes of the merged objects and events. Merge
patterns solve most of the pronominal references to
entities occurring in the message, as e.g. binding “it” to
“an order” in “I placed an order yesterday on the site.
Now I need to change it”. To solve references to entities
introduced in the dialogue by the system, these entities are
appended to the user message by the language generation
module, and then merged as usual.

(RObject
(name date)
(date “12 Dec

2002”))

Top

Object

Produce

Vegetable Meat

“the large white spuds delivered Monday
were not fresh”

(ObjectPattern
(name produce-1)
(object produce)
(pattern “(noun-group(head ?n))”)
(test “(denotes ?n object produce)”)
(fill-attributes produce “?n”))

(RObject
(name produce)
(produce “potato”))

(EventPattern(name produce-not-fresh)
(event quality-complaint)
(pattern “?p <- (RObject(name produce))”

“?v <- (verb-group(head be)(negated TRUE))”
“?f <- (adj-group(head ?n))”)

(test “(denotes ?n attribute state fresh)”
“(or(seq ?p ?v ?f)(seq ?v ?f ?p))”)

(fill-role produce “?p”)
(certainty 0.8)).

(MergePattern(name complaint-and-date)
(resulting-event quality-complaint)
(pattern “?ev <- (REvent(name quality-complaint))”

“?date <- (RObject(name date))”
(test “(not(contains-role ?ev date))”)
(merge “?ev”)
(remove “?ev”))

(Object
(name potato)
(super vegetable)
(denoted-by “potato”

“murphy” “spud”))

IAAI 2003 37

Logical Interpretation. The application domain may
logically constrain the meaning of a user message by
making certain interpretations inconsistent with each
other. For example, it is not possible for someone in the
same time to change the date of an order and to cancel it.
We define a consistent interpretation of a message as a set
of mutually consistent recognized objects and events.
Assuming we have an order with unique id 735, {(change-
order 735), (cancel-order 735)} is not a consistent
interpretation, but both {(change-order 735)} and {(cancel-order
735)} are. The score of an interpretation is the sum of the
scores of its final components (objects and events). A
component is said to be final if it is not contained in other
components (as values of their roles or attributes). The
logical interpretation stage has the goal of finding a
consistent interpretation of the input that has maximal
score (Fox and Mostow 1977). The problem can be solved
exactly by discrete optimization methods with branch and
bound or other forms of backtracking search. We have not
yet encountered situations where this would be needed.
Instead, we provide incompatibility patterns that can be
specified to detect inconsistent interpretations and locally
resolve them by heuristically choosing what components
to eliminate.

Similarity Based Language Understanding
The analytic approach can provide high accuracy but is
knowledge intensive. To obtain wide domain coverage and
graceful degradation we have integrated a similarity based
method into our system. This approach does not provide a
first-principles interpretation of a sentence. Rather, it
computes the degree of lexical similarity between a
message and a set of lexical (multi-word) entities,
returning the entities with highest similarity. The set of
lexical entities we match against can be arbitrary
documents or more specialized data like product
catalogues, geographical locations, institution names, etc.

We define a lexical entity e as a tuple e=<Q, R, C, O>.
Here, Q is a reference question, R is the response to it, C
is a set (corpus) of questions, C={qi}, such that each qi has
R as its response or is semantically a synonym of R.
Finally, O is a list of ontology concepts established when
this entity is recognized.

• If e is an FAQ, an example is Q(e)=”How do I contact
you?”, R(e)=”Call 1-800-555-1212”, C(e)={“Do you
guys have a phone number?”, “Where do I call you?”}
and O(e)={FAQ}

• With e a geographical location, an example is Q(e)=””,
R(e)=”Quebec, Canada”, C(e)={“Quebec”, “La Belle
Provence”}, O(e)={Location}.

• Finally, with e a product name, an example is Q(e)=””,
R(e)=”Red Rabbit” and C(e)={“Red Rabbit by Tom
Clancy”, “Clancy’s latest book”}, O(e)={Product}.

Searching and Matching. The standard solution to
recognizing the presence of such entities in a message is
key word search, where key words consist of words from

the Q, R and C components after stop word elimination,
stemming and synonym equivalence. Found words are
scored based on measures like inverse corpus frequency or
fixed scores based on the part of speech (nouns and verbs
scored more than adjectives and adverbs). The final
similarity score is computed in several ways depending on
the application. These include the vector space method
(Salton and McGill 1983) (for FAQ-s) or more specific
methods that consider word order as well (for
geographical location and product names).

Reinforcement learning. The similarity approach relies
on having a rather large and up to date corpus C for each
entity. We use reinforcement learning (Watkins and
Dayan 1992) to automate the construction and
maintenance of this corpus. Given a set of entities E where
each e=<Q, R, C, O>, reinforcement learning
continuously updates a relevance measure of the value of
each element in C(e), every time the entity e is being
asked about. The low valued elements are eventually
forgotten, while new useful ones are being learned,
guaranteeing that the corpus C(e) is always up to date.

Assume the user has input the question q = “Can I give a
few bucks to the driver?”. First, The best n matches to this
are found. The reference questions are displayed and the
user point and clicks on the one conveying the intended
meaning, e.g. “Is tipping necessary?”. Based on this
information, we update the relevance scores for the
questions in the corpus for this selected entity. Let qm be
the corpus question that actually did match. Its score is
increased by relevance(qm) <- d*relevance(qm) + (1-d)*1.
The other questions qi were not useful, so their score is
reduced by relevance(qi) <- d*relevance(qi) + (1-d)*(-1).
In both cases, 0<=d<=1 is a constant that determines how
quickly we devalue past experiences. Finally, q is added to
the corpus of the selected entity. If the size of the corpus
for the selected entity exceeded a set limit, the lowest
scored question is removed.

Similarity based language understanding has several uses
in our system. It is the fallback approach when the
analytic method fails. Often FAQ sets are used as the
repository in this case, ensuring that the user will get some
relevant answers. And it is also used in situations where
first-principles methods are simply inapplicable. For
example, to recognize product names from product
catalogues, important in retail applications, or to
recognize references to geographical locations in
applications dealing with the delivery of goods or services.

Managing the Dialogue

The results of the language understanding stage are
expressed as frame structures that have slots for the
information extracted from the input. An input like “I’ve
got the order delivered yesterday and I’ve noticed that the
strawberries were all smashed” is expressed as a
QualityComplaint frame, with strawberries as the product,
physically-damaged as the quality-issue and “26 Nov 2002” (say)

38 IAAI 2003

as the date. This frame implies that the user’s goal is to
make a complaint and obtain a resolution. User goals are
treated in two ways. Complex goals, like the quality
complaint, are treated in a deliberative manner. The agent
starts planning a conversation that will decide what
information to elicit and what business policies to apply to
find a mutually satisfactory resolution. Simple goals,
usually requests for information (“Do you charge a fee for
NSF checks?”) are treated reactively, with the system
providing the response and considering the issue
terminated. The two types of goals are treated differently
during the interaction. In the planned mode, the user can
always ignore the current system question and ask a
reactive question – this is immediately answered and the
planned mode is resumed (figure 4, left). If the request can
only be addressed in planned mode, the currently
executing planned interaction may or may not be
interrupted, depending on the priorities of the respective
goals (figure 4, right).

Figure 4. Switching between deliberative and reactive behaviors.

For each deliberative interaction, the Conversation
Management module creates a workspace for the
Interaction Planner, containing a local database and a goal
stack initialized with the inferred user goal. When the
workspace is active, goals are refined into subgoals,
questions are asked, inferences are made and business
policies are applied. Several workspaces can be active in
the same time, corresponding to various conversation
topics. Mechanisms are provided for a workspace to
inherit values form other workspaces, creating an
interaction context that extends across the entire session.
Reactive goals can generate responses sensitive to the
current deliberative goal as context, as illustrated in figure
4.

The Interaction Planner

In a business environment a planning approach to
interaction is necessary to guarantee that the solution
search space is systematically explored and a solution will
be found if one exists. This is a strong argument for AI
agents – they will never tire in the search for the best
solution and will either find it or tell you if none exists.

We use a hierarchical task network (HTN) (Wilkins 1988)
type of planning for its clarity and naturalness. In
designing the interactive planning language, the issue has
not been the complexity of the task networks or the size of
the search space - in many business environment these
have to be simple enough for people to manage. The issue
has been conducting the dialogue such that the logical
flow is clear, backtracking in the middle of the dialogue
can be made comprehensible, and the agent keeps
communicating what it is doing and why.

Figure 5. Task network for service diagnosis and example
conversation.

Hierarchical task networks consist of goal refinements into
subgoals. Figure 5 illustrates a task network example from
the wireless service diagnosis application, together with an
example customer service conversation. Refinements
marked with OR are disjunctive (at least one must be
carried out) while the others are conjunctive and ordered
(all must be carried out in the shown left to right order).

At the top level, troubleshooting consists of first acquiring
a problem description followed by establishing the cause
of the problem. There can be two classes of problems.

User: I’ve got the order yesterday,
and all strawberries were smashed.
System: Do you have the order
number?
User: anyway, what’s your return
policy?
System: You can be refunded up to
$10 per month up to $100 per year.
In your case, you have already been
refunded $70 this year.

So, can I have the order number?

User: I’ve got the order yesterday,
and all strawberries were smashed.
System: Do you have the order
number?
User: and two weeks ago I asked to
cancel the order and it was not.
System: I understand you have a
second complaint. Let’s get to that
after we finish the current one.

So, can I have the order number? LossOf
Connection

OR

OR

Wireless
Service

Troubleshoot

Acquire
Problem

Description

Establish
Cause

Download
Problem

NonDownload
Problem

OR

Download
Successful

Insufficient
Memory

Update
ServiceDB IdentifyLocation

UpdateServiceDBAskLocation

VerifyDeviceC
ompatibility

VerifyAccount
Restrictions

Verify
Subscription

Verify
Network

Downtime

Please describe your problem.
2 hours ago my kid tried several times to play Invaders, but without
success.
Where were you when this happened?
At our cottage in Haliburton.
Our digital network is temporarily out of service in the Haliburton
area, due to some upgrade work. The network should be restored by
5 pm today. We really apologize for this.

IAAI 2003 39

Download problems are identified by a recorded attempt to
download (through the air). This can fail because of
insufficient memory on the device or because of loss of
connection in the process. In the former case the user is
advised as to how to increase memory on their phone. The
latter is treated as a report of network failure and the
service database is updated with the location where the
failure was reported. If the download was successful, then
the problem is local to the device and the user is advised
on how to deal with it. Non-download problems fall in
several sub-classes and more than one can occur in the
same time.

The device may be incompatible with the service, there
may be account restrictions (e.g. content rating),
subscriptions may have run out or the network might have
been down. Any of the established ones are explained to
the user. This process is in fact a form of heuristic
classification (Clancey 1985), a well-known problem
solving method applicable to diagnosis tasks.

To achieve a goal, three types of operators are available,
Ask, Infer and Expand. The interactive operator (Ask)
generates a question for the user (via the Natural
Language Generation module), obtains the interpretations
of the response from Natural Language Understanding
and uses them to update the values of the planning
variables associated with the current workspace. The
AskLocation goal in figure 5 can be achieved by an Ask
operator that will generate the following example dialogue
fragment:

In this case, “Hwy 400 south of Barrie” is extracted as the
location of the incident and stored in the current
workspace, where can be accessed by other operators. The
main components of the Ask operator are:

• A precondition in terms of the workspace variables and
the current and past semantic frames.

• A language generation request for question formulation.

• The function or method to interpret the response.

• The number of times the question can be re-asked if the
response is not understood. If this is exceeded without
the answer being understood, the operator fails and
backtracking is initiated.

The non-interactive operator (Infer) is used to perform
deductions based on the existing values in the workspace.
It is similar to Ask, but will not generate any question. It
may however inform the user about inferences drawn to
further clarify the interaction.

If the goal can not be achieved directly, it can be expanded
into an ordered sequence of subgoals using the Expand
operator. Figure 5 is composed of possible refinements as
specified by this operator. This operator is similarly
instrumented to clarify the dialogue flow. Inform-type
messages can be specified for use when a goal is expanded

into certain subgoals (e.g. “I’m going to ask you now a few
questions about your account”). Other informs are for use
when an expansion failed and backtracking is about to
begin (e.g. “I could not find your order based on the
provided information”), or when an expansion succeeded.
The Expand operator also specifies the constraints that
must be satisfied in order for the expansion to be
considered successful. The constraints are of two kinds.
Computed constraints are predicates amongst workspace
variables (e.g. that a subscription to a service by an user is
still active). Interactive constraints replace the predicate
by an accept-reject type of question addressed to the user,
for example “Service upgrade during week-ends is subject
to an extra $5.00 per month. Would you like to
upgrade?”. Computed constraints are similar to Infer
operators, while interactive ones are similar to Ask
operators, except that they do not update workspace data.

This description applies to the deliberative behavior. The
reactive behavior allows the user to deviate for a short
time from the planned interaction, ask their own
questions, get the response and continue with the planned
interaction. To make the agent reactive, we use the React
operator. This looks for unexpected semantic frames
(coming from unexpected input) and answers them if the
preconditions are satisfied. Reactions can be supported
everywhere or in specified contexts: when a certain
(deliberative) goal is being pursued or during certain Ask
executions. A reaction can specify response messages to be
generated and/or side effect actions to be executed. In
many applications we use reactions to answer FAQ-s in
context, as illustrated in figure 4.

The interaction planning system is aware of the
interaction channel (web, email or voice) on which the
system functions. The differences between these channels
require that we use the advantages and avoid the
drawbacks of each. For example, plan to fill a form in a
browser, parse information from emails, or prompt and
check pieces of information individually on the phone.
Channel specific behaviors are created by specifying
alternative goal expansions conditioned by the interaction
channel.

To complete the presentation, two more modules need to
be discussed. The purpose of the Business Reasoning
module is to allow the specification and application of
business policies. In the wireless service diagnosis
example, a business policy is that accounts can not contain
applications violating defined content ratings. Business
policies for retail applications may specify lead times and
cutoff times for order modification, various constraints on
refunds and returns etc. Business reasoning models are
specified by classes for business objects, business policies,
business rules, queries and actions.

The introduction of this module clarifies the distinction
between the strategic level at which all interactions are
managed by Conversation Management, the level of
planning goal directed interactions by the Interaction
Planner and the domain reasoning level supported by the

Agent: Where were you when you experienced the loss
of connection?
User: On highway 400, south of Barrie.

40 IAAI 2003

Business Reasoning module. This is consistent with
previous work on knowledge acquisition and problem
solving methods (McDermott 1988) that has emphasized
the recognition of the types and roles of knowledge as the
basis of systematic development of AI applications.

The second module is the language generation component
tasked with creating the linguistic form for the system's
questions and messages. We use a two stage generation
process. First, the individual messages requested by
various planning operators are generated and collected
into several buckets. Each component message is created
by instantiating a template. Templates are annotated with
pragmatic attributes of the text they generate, for example
concise, verbose, polite, etc. The choice of the actual
template used depends on a score that measures how many
of the requested attributes are provided. In the second
stage, generation policies assemble and edit these
messages in the final form to be seen by the user, by
sorting the components, filtering out redundant ones,
inserting punctuation, formatting the text, etc.

On interaction channels that use text (web, email), the
system generates either simple text or HTML forms. On
the voice channel it generates VoiceXML (W3C 2000)
scripts that play vocal prompts, define input grammars
and evaluate the voice response using a voice recognition
engine. The Natural Language Understanding module is
bypassed for voice interactions, as we use the
comparatively limited language understanding ability of
the voice recognition engine. We currently use
commercial voice recognition engines provided by voice
ASP-s like Voxeo (www.voxeo.com). Interestingly, adding
VoiceXML scripts to the generation module was the only
platform modification required to have our conversational
approach function on the telephony network.

Evaluation

The retail repository was used to create several
applications, currently in different stages of deployment,
as shown in table 1 (where Client Evaluation means
evaluation by the client company, prior to beta testing on
site). For each application, we show the major customer
service issues addressed. For each issue, we show how
often it occurs in interactions in every application. The
Solved row shows what total percentage (across all issues)
was successfully solved by the system. An 80/20 rule was
apparent: a few issues dominate the majority of
interactions. This is good news because it helps focus
natural language and problem solving on those issues.

To cope with the rest of issues, we have included each
time a base of FAQ-s recognized through similarity
matching.

Table 2 shows similar results for the telecommunications
repository. Here we have two different applications. The

diagnosis one uses heuristic classification (McDermott
1988) as the problem solving method and leads to longer
conversations. The wireless billing application has a broad
but shallow one question – one answer nature and was
done by similarity methods.

The critical aspect in all applications is the ability to
understand language. We monitor and assess this
constantly on the basis of graphs like the one shown in
table 3 (a typical week form the production Gifts
application). We distinguish in scope questions (those
which the knowledge base is prepared to deal with) from
out of scope ones, but we try to extend the scope by
similarity and analytic methods.

These results are generally satisfactory for a low cost “self-
serve” customer service solution as they show the ability of
the automated system to reduce call center costs and give
customers more access to information. There is also
considerable room for improvement, which we do in two
ways. The industry specific repository approach (based on
ontologies) allows us to improve our language
understanding ability by creating reusable concepts and
semantic patterns. And the lower accuracy but wide
coverage similarity matching method provides a simple,
non technical way to extend the scope of the system
dynamically.

Gifts
(Produc
tion)

Web
Grocery
(Beta)

Flowers
(Beta)

Dept.
Store
(Client
Eval.)

Books &
Music
(Client
Eval.)

Solved 66% 65% 52% 55% 64%
Order Status 33% 10% 3.3% - 20%
Order
Change

2% 3% 4.6% - 12%

Quality
Issue

- 17% - - -

Missing
Items

- 16% - - 4%

Account
Issues

15% 9% 4.9% 12% 6%

Product
Availability

5% 10% 7.2% - 1%

Delivery
Inquiries

21% 2% 2.8% - 4%

Business
Policy
Questions

3% 11% 56.4% 67% 11%

Table 1. Applications based on the retail repository.

Tele-communications
Solutions Vendor
(Client Evaluation)

Consulting
Company
(Client Evaluation)

Solved 74% 85%
Diagnosis and explanation of
wireless service issues

100% -

Wireless billing questions - 100%

Table 2. Applications based on the telecommunications repository.

IAAI 2003 41

Table 3. Natural Language Understanding performance.

Lessons Learned and Conclusions

Paradoxically, designers of conversational customer
interaction systems do not control the scope of their
system. Users do. People will ask about anything they
need to know or do, without caring about the “scope” of
the system as defined by its designers. If the e-commerce
site being serviced happened to be slow for whatever
reason, the customer service agent will get complaints
about it. If any information is missing or unclear on the
site, the agent will get questions about it. The scope of the
system is always “anything common-sensically related to
the business”. Achieving such breadth through detailed
semantic analysis is very hard, if at all possible. For this
reason, we are always aiming for a “bell curve” relation
between the breadth and depth of understanding. Business
sub-areas that require deep understanding (e.g. quality
complaints in retail) are supported by elaborated linguistic
patterns. Other sub-areas are supported by the less
accurate but wide coverage similarity method that taps
into the existing document base of any business. This
graceful degradation property ensures that people get an
answer in most cases, even if less precise. Experience has
shown that users are more forgiving if they get an
approximate or partially relevant response than no
response at all. Finally, if none of these works, clear
provisions must be made to connect the customer to a live
representative, before his or her tolerance is exhausted.

The second lesson has to do with how responses are
written. In the absence of non-verbal communication
gestures that play such an important role in inter-human
interaction, the connotations contained in the textual
responses must be weighed carefully. Freshness, variety,
and being cute when you don’t understand will always
help.

The third lesson is about the role of AI. Many previous
applied AI systems have reported the “disappearance of
AI” phenomenon – fewer and fewer AI technologies were
used as the system was being deployed commercially. We
believe that this happened because the initial goals of the
system were diluted in the process. Our to date experience

has been the opposite and our current system contains a
quite wide assortment of integrated AI solutions.

One reason why this was possible is the fourth lesson
learned, that we couldn’t have done it without using an AI
programming language. Most of the system is written in
Jess (Friedman-Hill 2003), a Java embedded descendant of
OPS5 and Clips. Properly understood and used, rule based
programming and AI-style “second order programming”
based on constructs like eval, apply and the Jess build are
invaluable for writing and integrating complex algorithms
in a concise and timely manner. And their integration
with Java gave us unconstrained access to all Internet and
other programming resources ever needed.

The platform has been used to create customer interaction
agents in industry verticals like wireless service
provisioning and several retail domains. These have
undergone extensive beta testing, some of them have been
in production and more are to come. The jury is still out
with respect to whether we have managed to build the
knowledgeable and infinitely patient agents able to
provide the frictionless customer service experience
envisioned. However, we strongly believe that this will
only happen at the end of a serious integration effort
aimed at putting together a wide range of AI, Internet and
conventional technologies.

References

Allen, J.F. Byron, D.K. Dzikovska, M. Ferguson, G. Galescu, L.
2001. Toward Conversational Human Computer Interaction. AI
Magazine, Winter 2001, 27-37.
Applet, D.E. Hobbs, J.R. Bear, J. Israel, D. Tyson, M. 1993.
FASTUS: A Finite-State Processor for Information Extraction
from Real-World Text. Proceedings of IJCAI-93, Chamberey,
France, August 1993.
Borgida, A. Brachman, R.J. McGuiness, D. Resnick, L.A. 1989.
CLASSIC: A Structural Data Model for Objects. Proc. 1989
ACM SIGMOD International Conference on Management of
Data, June 1988, 59-67.
Clancey, W.J. 1985. Heuristic Classification. Artificial
Intelligence 27, 289-350.
Friedman-Hill, E. 2003. “Jess in Action”, Manning Press, 2003.
McDermott, J. 1988. A taxonomy of Problem Solving Methods.
In S. Marcus (ed): Automating Knowledge Acquisition, Kluwer
Academic Press, 1988, 225-226.
Fox, M.S. and Mostow, J. 1977. Maximal Consistent
Interpretations of Errorful Data in Hierarchically Modeled
Domains. Proceedings of IJCAI-77, Morgan Kaufmann, 1977,
165-171.
Salton, G. and McGill, M. 1983. Introduction to Modern
Information Retrieval. New York: McGraw Hill.
Watkins, C.J.C.H. and Dayan, P 1992. Q-learning. Machine
Learning 8(3), 279-292.
Wilkins, D. 1988. Practical Planning. Morgan Kaufmann San
Mateo, CA.
W3C 2000. Voice Extensible Markup Language (VoiceXML)
W3C Note 5 May 2000, http://www.w3.org/TR/voicexml.

0

10

20

30

40

50

60

70

80

90

11 12 13 14 15 16 17

Day of Month

P
er

ce
n

ta
g

e In scope

Correct vs in scope

Correct vs total

Error

42 IAAI 2003

