Int. J. Coop. Info. Syst. 1996.05:275-314. Downloaded from www.worldscientific.com
by UNIVERSITY OF TORONTO on 08/27/13. For persona use only.

International Journal of Cooperative Information Systems
Vol. 5, Nos. 2 & 3 (1996) 275-314
© World Scientific Publishing Company

CAPTURING AND MODELING COORDINATION
KNOWLEDGE FOR MULTI-AGENT SYSTEMS

MIHAI BARBUCEANU and MARK S. FOX
Enterprise Integration Laboratory, University of Toronto
4, Taddle Creek Road, Rosebrugh Building, Toronto, Ontario, M5S 1A/4
{mihai,msf} @ie.utoronto.ca

The agent view provides a level of abstraction at which we envisage computational sys-
tems carrying out cooperative work by interoperating globally across networks connect-
ing people, organizations and machines. A major challenge in building such systems is
coordinating the behavior of the individual agents to achieve the individual and shared
goals of the participants. As part of a larger project targeted at developing an Agent
Building Shell for multiagent applications, we have designed and implemented a coordi-
nation language aimed at explicitly representing, applying and capturing coordination
knowledge for multiagent systems. The language provides KQML-based communica-
tion, an agent definition and execution environment, support for modeling interactions
as multiple structured conversations among agents, rule-based approaches to conversa-
tion selection and execution, as well as an interactive tool for in context acquisition and
debugging of cooperation knowledge. The paper presents these components in detail and
then shows how the coordination language is used in the Agent Building Shell to manage
content-based information distribution scenarios among agents and the coordination as-
pects of conflict management processes that occur when agents encounter inconsistencies.
The major application of the system is the construction and integration of multiagent
supply chain systems for manufacturing enterprises. This application is used throughout
the paper to illustrate the introduced concepts and language constructs.

1. Introduction

The agent view provides a level of abstraction at which we construe computational
systems that interoperate globally across networks linking people, organizations and
machines on a single virtual platform. We call the computational entities that can
operate at this level agents. For our purposes, we consider an agent to be a piece
of software that:

(1) Is significantly autonomous, goal-oriented and entrusted in performing its
functions.

(2) Operates globally on networks by relying on application-independent high-level
communication and interaction protocols with other “agents”.

Focusing on the agent level of system (de)composition brings to attention a

number of specific issues that are not adequately dealt with at other levels of system
organization. Some of these are:

275

Int. J. Coop. Info. Syst. 1996.05:275-314. Downloaded from www.worldscientific.com
by UNIVERSITY OF TORONTO on 08/27/13. For persona use only.

276 M. Barbuceanu & M. S. Fozx

e Agent interaction: How do agents communicate? How do agents coordinate in
joint work, such as to achieve the individual and joint goals of the participants?
How are problems stemming from dynamically occuring events and partial knowl-
edge about the environment handled during coordinated behavior? How do we
model the patterns of interaction and interoperation that characterize coordi-
nated behavior? How do capture these patterns during the on-line operation of
the system?

e Representation: How do agents represent their local views of the domain? How
is the local view updated or maintained as a consequence of interaction? How
are the semantic problems related to conflicting or different meanings of the
exchanged terms solved? How do agents revise their beliefs due to exchanged
information? How do agents share models and how does the shared model change?
How do agents model each other in a cooperative community? How are common-
sense issues, e.g. time, action, causality, handled?

o Reasoning: How do the requirements for communication and coordination impact
the internal reasoning of agents? How do agents handle contradictory informa-
tion, and how is consistency maintained across agents that may have different
goals, views, preferences?

o Integration: How can pre-existing (legacy) applications be integrated into agents
and thus used in agent communities?

From the practical standpoint, any solutions to the above issues must provide
the ability to reuse descriptions of coordination mechanisms, system components,
services and knowledge bases. Based on this recognition, we are developing an Agent
Building Shell that provides reusable languages and services for agent construction,
relieving developers from the effort of building agent systems from scratch and
guaranteeing that essential interoperation, communication and cooperation services
will always be there to support applications.

The layered agent architecture of the Agent Building Shell is shown in Fig. 1.
The knowledge management layer provides support for general purpose representa-
tion and inference. It is used to represent an agent’s conceptualizations — of its
domain, operation environment and of its own capabilities — as well as the agent’s
actual beliefs — again about domain, environment and self. It provides support for
nonmonotonic reasoning — agents change their beliefs dynamically — and general
purpose deductive reasoning. The description logic implementation of this layer
provides services for automated concept classification and inconsistency detection,
theorem proving through subsumption and truth-maintenance based management
of the belief base.

The ontology layer consists of the actual conceptualizations agents maintain
about their domain, environment and self. Some conceptualizations are shared
amongst agents to allow them to communicate in terms that are semantically uni-
fied. The environment and self representations use a shared organization ontology
that captures the structure of organizations, the roles, goals, actions and empower-
ment of member agents of the organization.

Int. J. Coop. Info. Syst. 1996.05:275-314. Downloaded from www.worldscientific.com
by UNIVERSITY OF TORONTO on 08/27/13. For persona use only.

Capturing and Modeling Coordination Knowledge for Multi-Agent Systems 277

Other Agents...

Communication

Coordination

Legacy Software
Integration

Cooperative Cooperative

Information Distribution ~ Conflict Management

Ontologies and Models:

Domain, Organization, Self

Knowledge Management

Fig. 1. Architecture of the agent building shell.

The cooperative information distribution services provide permanently active in-
formation distribution services allowing agents to stay informed about significant
events without having to explicitly demand other agents to provide this informa-
tion each and every time they need it. Agents advertise their long-term topics of
interest to the community. Agents that can supply relevant information will do so
whenever the information is available and as long as the interest persists. If previ-
ously sent information is later invalidated, senders will notify receivers. The service
uses subsumption in description logics to “prove” that some information matches
an interest expressed as a description logic concept.

The cooperative conflict management service provides a general model for rea-
soning about retraction in a multiagent setting. If an agent receives contradictory
information from other agents, it applies this model to retract some beliefs and
reinstall consistency both locally and with its neighbors. The model uses:

(1) A measure of the credibility of the beliefs that are potentially retractable.
(2) A measure of the utility of these beliefs in the global current situation.

The latter captures the fact that retracting information may imply undoing
previous decisions and actions (e.g. retracting orders for materials) that come with
money or other costs. The model reinstates agent-level consistency and, through
negotiation with the agents sharing the retracted beliefs, extends the consistent state
to surrounding agents. Also, the model stipulates the kind of cooperative behavior
that an agent must exhibit towards other agents in the process of reestablishing a
consistent state. Both cooperative information distribution and cooperative conflict
management require coordinated behavior from the involved agents and thus make
essential use of the coordination system.

Int. J. Coop. Info. Syst. 1996.05:275-314. Downloaded from www.worldscientific.com
by UNIVERSITY OF TORONTO on 08/27/13. For persona use only.

278 M. Barbuceanu & M. S. Foz

In this paper we focus on the solutions we are providing for the outer layer of the
architecture. They are embedded into a domain independent COOrdination Lan-
guage (COOL) that provides services for defining distributed agent configurations,
managing communication, defining and managing structured interactions amongst
agents, external software integration and in context acquisition and debugging of co-
ordination knowledge. As these solutions impact on the way agents manage change
by information distribution and conflict resolution, we also address these aspects
showing how the coordination service supports these tasks.

The paper is structured as follows. In Sec. 2, we review the work in Distributed
Artificial Intelligence from several perspectives and define our research goals. As
the subsequent presentation of our tools is carried out in the context of our main
application, the agent-based integration of the supply chain of manufacturing en-
terprises, we continue in Sec. 3 with presenting this application domain. Section 4
deals with the main subject of the paper, the components of the coordination lan-
guage. We illustrate the language throughout with examples from the supply chain.
Section 5 then deals with the coordination knowledge acquisition service that al-
lows users to extend and debug coordination knowledge on-line. To show how the
coordination system is integrated with other reasoning tasks in the Agent Building
Shell, in Sec. 6 we review two other services of the architecture that make use of
the coordination framework, cooperative information distribution and cooperative
conflict management. In the end, we discuss some related approaches and provide
concluding remarks.

2. Coordination Knowledge

Coordination has been defined as the process of managing dependencies between
activities.3® An agent that operates in an environment holds some beliefs about the
environment and can use a number of actions to affect the environment. Coordina-
tion problems arise when:

(1) There are alternative actions the agent can choose from, each choice affecting
the environment and the agent and resulting in different states of affairs and/or;

(2) The order and time of executing actions affects the environment and the agent,
resulting in different states of affairs.

The coordination problem is made more difficult as an agent has incomplete
knowledge of the environment and of the consequences of its actions and the envi-
ronment changes dynamically making it more difficult for the agent to evaluate the
current situation and the possible outcomes of its actions. In a multi-agent system,
the environment is populated by other agents, each pursuing their own goals and
each endowed with their own capabilities for action. In this case, the actions per-
formed by one agent constrain and are constrained by the actions of other agents.
To achieve their goals, agents will have to manage these constraints by coordination.

In this paper we adopt the view that the coordination problem can be tackled
by having knowledge about the interaction processes taking place among agents.

Int. J. Coop. Info. Syst. 1996.05:275-314. Downloaded from www.worldscientific.com
by UNIVERSITY OF TORONTO on 08/27/13. For persona use only.

Capturing and Modeling Coordination Knowledge for Multi-Agent Systems 279

This knowledge is about the problem-solving competence of multi-agent systems
as opposed to that of individual agents. As such, Fox?® has proposed that it be
studied as an “organization level” and applied Organization Theory concepts to
characterize this level. More recently, Jennings3® has coined the term “coopera-
tion knowledge level” to separate the social interaction know-how of agents from
their individual problem-solving know-how and to help focus efforts on coming with
principles, theories and tools for dealing with social interactions for problem solving.

Previous work in DAI can be seen as investigating various facets of this level of
knowledge. One direction is concerned with devising useful structures for coopera-
tive problem solving. Thus, the Contract Net protocol®® provided a way of coordi-
nating agents without global control, by means of a contracting model comprising
dynamic task decomposition, negotiation of subtask assignments among agents and
the commitment of agents to their assigned subtasks. In the Partial Global Plan-
ning method (PGP)!® and its Generalized PGP form,'® agents maintain their own
subjective views of the tasks, task dependencies and the responsibilities of agents.
Various coordination mechanisms (like exchanging private views of tasks, commu-
nicating results, handling various types coordination relationships) enable agents to
modify their subjective view of the task structure and their commitments to tasks
in the task structure, ultimately improving performance. The Joint Responsibility
model3? prescribes when and how agents should form teams and how team members
should behave during joint action. The code of conduct imposed by Joint Responi-
bility ensures that the group will operate in a coordinated and efficient manner and
that it is robust in face of changing circumstances.

Given the diversity of such cooperation structures, how can we identify, analyze
and formalize the essential elements cooperation structures are composed of ? This
is the focus of a second major direction of work in DAI. We make several distinctions
here. The first is between what happens inside an agent when it coordinates with
other agents and what happens between agents when cooperative behavior occurs.
The second is between explaining how human agents behave and how programmed
agents behave. Although in this paper we are solely concerned with artificial agents,
insights into human agenthood will help us build agents that are understandable
and thus easier to integrate as partners for human users.

Talking about what happens inside human agents, many researchers believe
that mental states, like intentions and commitments are the central notion here.
Intentions and commitments have been studied for example in Refs. 8, 12 and 49.
These studies uncovered a number of essential properties of intentions. Intentions
must be consistent with each other and with the beliefs of the agent, the latter
meaning that if the intended actions are executed and the agent’s beliefs hold in
the world, then the desired state of affairs should follow. Also, intentions should
have a degree of stability, however without being totally inflexible. Agents should
not spend all their time considering and reconsidering intentions. At the same time,
they should be able to drop intentions if changes in the situation makes it impossible
or undesirable to achieve the intended state of affairs. The re-examination of agents’

Int. J. Coop. Info. Syst. 1996.05:275-314. Downloaded from www.worldscientific.com
by UNIVERSITY OF TORONTO on 08/27/13. For persona use only.

280 M. Barbuceanu & M. S. Fox

intentions should be “regulated” by known policies or conventions®! stating under
what circumstances intentions should be reconsiderd. In the Cohen and Levesque!?
model for example, an agent should reconsider its commitment to a goal G if any
of the following happens: G is already satisfied, G will never be satisfied, the
motivation for G does not exist any more.

The above approach has been extended to the modeling of inter-agent phe-
nomena. Levesque, Cohen and Nunez®” have proposed for example necessary and
sufficient conditions for having Joint Persistent Goals that would allow agents to
form teams:

(1) Agents mutually believe G is currently not true.

(2) They mutually believe they all want G to become true.

(3) Until they all come to mutually believe either that G is true, that G will never
be true or that the motivation for G is false, they will continue to mutually
believe that they each have G as a weak achievement goal (roughly either a
normal goal, or a goal whose achievement status has to be mutually believed
by all team members).

The last condition allows agents to undertake actions knowing that if a prob-
lem with goal satisfaction occurs, the agents detecting it will inform the others. In
order to act cooperatively, a number of other conditions have been discussed, includ-
ing the mutual desire of agents to cooperate'® (otherwise agents may for example
compete) and the need for a common plan to achieve the goal that will determine
the contributions of participants (otherwise inconsistent action may result even if
there is a common goal). The latter issue has been dealt with by distributed or
multi-agent planning research, including for example, Refs. 17 nd 25. Monitoring
the execution of joint action has been investigated as a way of determining what
to do when things go wrong or unexpectedly.®® Another approach to coordinating
multiple agents is to restrict their activities in a way that enables them to achieve
their goals without interfering with each other. Shoham and Tennenholtz?? have
proposed social laws as the means to specify these restrictions and have studied
how such laws can be designed to guarantee certain behaviors from the multi-agent
system.

From a sociological perspective, Castelfranchi'® has shown that internal com-
mitments of agents (commitments of individual agents to certain actions) are not
enough to explain social phenomena. He discusses social commitments as basic
relations between two or more agents with respect to executing some actions.
This is different from having several agents sharing the same internal commit-
ment. This notion uncovers the dependence and power relations among people that
form the objective basis of social interaction and has important normative conse-
quences, like obligations and expectations, that pertain to the notions of Group and
Organization.

Given work like the above, how do we brigde the gap between the logical, socio-
logical and psychological analysis and the engineering of practical multi-agent sys-
tems, performing in real environments and bringing real services to people? There

Int. J. Coop. Info. Syst. 1996.05:275-314. Downloaded from www.worldscientific.com
by UNIVERSITY OF TORONTO on 08/27/13. For persona use only.

Capturing and Modeling Coordination Knowledge for Multi-Agent Systems 281

are not too many answers to this question, but a few of them deserve mentioning. A
first answer is represented by the applicative work of Jennings3® who started with
the Cohen and Levesque model for joint intentions, extended it to better fit the
need for a common plan and then implemented it with state of the art Al technolo-
gies. The result was an industrially applied multi-agent system that comprised the
results of theoretical work on joint intentions.

The second answer lies in developing generic agent architectures that integrate
the results of theoretical investigations into practical languages and tools. This is
the path taken by Agent Oriented Programming® where a generic notion of agent
was proposed, using speech-act based communication, rule-based behavior and en-
capsulation into object-like structures. This approach talks about an agentification
process in which real systems are casted in terms of mental states and the other
concepts provided by the approach. Other work in the same direction focuses on
specific aspects that are perceived as important when developing practical systems.
The ARPA sponsored Knowledge Sharing Effort** attempts to build technologies
for inter-agent communication by proposing a language for content communica-
tion based on logic, KIF,?® and a language for intention communication, based on
communication acts, KQML.!® Together, these form an Agent Communication Lan-
guage (ACL), and approaches like Genesereth’s define an agent as anything that
communicates using the ACL.?* Also part of the Knowledge Sharing Effort, work
has been devoted to the problem of semantically unifying agent communication by
giving common definitions to the terms used by agents. Dictionaries of such shared
terms are called ontologies?!:?8:2% and a number of tools have been constructed for
building and maintaining them. Our work on the generic agent shell falls into this
broad second category.

As far as our approach to coordination is concerned, we take the above investiga-
tions as revealing the nature of the knowledge that is involved in social behavior and
interactions. Our aim is to provide generic tools for the capture, representation and
use of this knowledge in multi-agent systems. As previously noted by Jennings,33
the evolution of applicative DAI systems follows the evolution of applicative knowl-
edge based Al systems in the following sense. Initially, knowledge based systems
were encoded in more or less ad hoc ways, such that a lot of relevant knowledge
about, for example the task structure and problem solving methods were buried into
the code once systems were implemented, hence could not be explicitly analyzed
and reasoned about. This created growing problems with explanation, reusabil-
ity and maintainability. In response to these problems, emphasis has later shifted
onto explicitly characterizing the problem solving task at a higher level, for exam-
ple in terms of generic problem solving methods*? like heuristic classification!! or
distinguishing between the various types of knowledge used to model the domain,
the inferences, the task structures and the higher order strategies for resolving
impasses.?® With this emphasis came a new generation of tools that are now able to
explicitly represent such higher level types of knowledge and assist users in building
systems in more principled and accountable ways.

Int. J. Coop. Info. Syst. 1996.05:275-314. Downloaded from www.worldscientific.com
by UNIVERSITY OF TORONTO on 08/27/13. For persona use only.

282 M. Barbuceanu & M. S. Fox

In an essential way we are trying to do the same for the coordination knowledge
agents must possess to interact successfully. In other words we are trying to come
up with higher level constructs for describing coordination processes and to fully
support these constructs in a programming environment for building multi-agent
systems. The insights into the nature of social interaction, from sociological or
psychological sources, described semantically in logic systems, give us principles
and background knowledge for understanding and modeling interactions. Together
with domain and application knowledge, they are used by developers to design
the coordination structures that would be actually used by applications. These
coordination structures, encoded into our coordination language, then guide the
interactions among agents. Even if structures of human social interaction may be a
source of inspiration for some agent coordination structures, note that they are not
our object of study and we do not aim in any way at building programs that behave
similarly. Our goal is to build clear, understandable, reusable models of interaction
for artificial multi-agent systems and to support their engineering as far as we can.

In this perspective, we are developing coordination technology that:

(1) Provides a conceptualization of the coordination task in terms of agents, generic
and actual conversation structures, rule-driven conversation moves, rule-driven
exception handling, rule-driven control of agent and conversation execution,
multi-agent and multi-conversation management.

(2) Actual programming constructs for the above concepts.

(3) A full visual environment for developing, testing and executing coordination
programs.

(4) A full visual environment for non-intrusively capturing coordination knowledge
in the execution context. This technology is developed in the framework of a
multi-agent system for supply chain integration which provides our experimen-
tation environment. All these elements form the subject of this paper.

3. Integrating the Supply Chain

The supply chain of a modern enterprise is a world-wide network of suppliers, facto-
ries, warehouses, distribution centres and retailers through which raw materials are
acquired, transformed into products, delivered to customers, serviced and enhanced.
In order to operate efficiently, supply chain functions must work in a tightly coor-
dinated manner. But the dynamics of the enterprise and of the world market make
this difficult: exchange rates unpredictably go up and down, customers change or
cancel orders, materials do not arrive on time, production facilities fail, workers
are ill, etc. causing deviations from plan. In many cases, these events cannot be
dealt with locally, i.e. within the scope of a single supply chain “agent”, requiring
several agents to coordinate in order to revise plans, schedules or decisions. In the
manufacturing domain, the agility with which the supply chain is managed at the
tactical and operational levels in order to enable timely dissemination of informa-
tion, accurate coordination of decisions and management of actions among people

Int. J. Coop. Info. Syst. 1996.05:275-314. Downloaded from www.worldscientific.com
by UNIVERSITY OF TORONTO on 08/27/13. For persona use only.

Capturing and Modeling Coordination Knowledge for Multi-Agent Systems 283

enterprise level Warehouse
. Logistics Warehouse2
Customer \.
Transportation
T AN

Plant! L _—
Shop Plan)l

plant level

Resource
Mgr.

Fig. 2. Muliti-level supply chain.

and systems, is what ultimately determines the efficient achievement of enterprise
goals and the viability of the enterprise on the world market.

We address these coordination problems by organizing the supply chain as a net-
work of cooperating agents, each performing one or more supply chain functions,
and each coordinating their actions with other agents. Figure 2 shows a multi-level
supply chain. At the enterprise level, the Logistics agent interacts with the Cus-
tomer about an order. To achieve the Customer’s order, Logistics has to decompose
it into activities (including for example manufacturing, assembly, transportation,
etc.). Then, it will negotiate with the available plants, suppliers and transportation
agents the execution of these activities. If an execution plan is agreed on, the se-
lected participants will commit themselves to carry out their part. If some agents
fail to satisfy their commitment, Logistics will try to find a replacement agent or
to negotiate a different contract with the Customer. At the plant level, a selected
plant will similarly plan its activities including purchasing materials, using exist-
ing inventory, scheduling machines on the shop floor, etc. Unexpected events and
breakdowns are dealt with through negotiation with plant level agents or, when no
solution can be found, submitted to the enterprise level.

A major challenge for such an application is the ubiquity and complexity of
coordination aspects. Coordination occurs when agents negotiate future plans or
actions, when they execute actions together, when they exchange information, when
they respond to events or when they solve conflicts. We address this by building
models and tools for the representation, utilization and in context acquisition of
this sort of knowledge, as explained in the remainder of this paper.

4. The Coordination Language

As in the situated-automata model,*” we view an agent as essentially performing
a transduction. It takes a stream of input messages from the environment (in
general composed of other agents) and generates a stream of output messages to
the environment, mediated by its internal state. The mediation is described in the
coordination language and performed by a conversation management mechanism

Int. J. Coop. Info. Syst. 1996.05:275-314. Downloaded from www.worldscientific.com
by UNIVERSITY OF TORONTO on 08/27/13. For persona use only.

284 M. Barbuceanu & M. S. Fox

enhanced with knowledge acquisition capabilities whose description is the purpose
of this and the next section.

Before going into the details of the coordination language, we note that the
interaction among agents takes place at several levels. The first level is concerned
with the information content communicated among agents. A piece of information
communicated at this level may be a proposition (fact) like “(produce 200 widgets)”.
The ARPA Knowledge Sharing Effort** has produced the KIF?? logic language for
describing the information content transmitted and the conceptual vocabularies
communicating agents must share in order to understand each other.

The second level specifies the intentions of agents. The same information content
can be communicated with different intentions. For example:

e (ask (produce 200 widgets)) — the sender asks the receiver if the mentioned fact
is true.

e (tell (produce 200 widgets)) — the sender communicates a belief of his to the
receiver.

o (achieve (produce 200 widgets)) — the sender requests the receiver to make the
fact one of his beliefs.

o (deny (produce 200 widgets)) — the sender communicates that a fact is no longer
believed.

KQML! has been designed as a universal language for expressing such intentions
such that all agents would interpret them identically. KQML supports communica-
tion through explicit linguistic actions, called performatives. As such, KQML relies
on the speech act*® framework developed by philosophers and linguists to account
for human communication. Work is currently being done!®:3¢ on endowing KQML
with formal semantics based on the speech-act theory as formalized and extended
within the fields of Computational Linguistics and Artificial Intelligence.'*

The third level is concerned with the conventions that agents follow when in-
teracting by exchanging messages. The existence of shared conventions makes it
possible for agents to coordinate in complex ways, for example by carrying out
negotiations®*>¢ about their goals and actions. Many such examples can be given
in the context of the supply chain. The Customer agent acquires from the customer
an order for 200 lamps with a due date for 28 September 1994. It sends this as
a proposal to the Logistics agent. Knowing that Logistics can only answer with
accepting, rejecting or counter-proposing, the Customer agent is able to check that
the actual response is one of these and carry out a corrective dialogue with Logis-
tics if this is not the case or if other events occur (such as delays or message shuf-
fling). If Logistics answers with a counter-proposal (e.g. 200 lamps with due date 15
October 1994), the Customer agent may use knowledge about acceptable trade-offs
and negotiate with Logistics an amount and a due-date that can be achieved and
satisfies the customer. In its turn, upon receiving the order proposal, Logistics will
start negotiations with plants and transportation companies to determine the feasi-
bility of scheduling the production and delivery of the order and then will monitor

Int. J. Coop. Info. Syst. 1996.05:275-314. Downloaded from www.worldscientific.com
by UNIVERSITY OF TORONTO on 08/27/13. For persona use only.

Capturing end Modeling Coordination Knowledge for Multi-Agent Systems 285

execution as already shown. This is the level of interaction we are supporting with
the COOL language described in this paper.

4,1. Functions and architecture

From the viewpoint of the intended functionality, COOL is:

(1) A language for describing the coordination level conventions used by cooperat-
ing agents.

(2) A framework for carrying out coordinated activities in multiagent systems.

(3) A tool for design, experimentation and validation of cooperation protocols.

(4) A tool for incremental, in context acquisition and debugging of cooperation
knowledge.

Coordination Knowledge Acquisition and Debugging

Agent and Conversation Management

Communication

Fig. 3. COOL Architecture.

Architecturally, (Fig. 3) COOL is structured into three layers, the first providing
support for communication in KQML, the second providing the main machinery for
defining and executing agents and coordination structures and the third supporting
the in context acquisition and debugging of coordination knowledge.

4.2. Communication

COOL has a communication component that implements an extended version of the
KQML language. Essentially, we keep the KQML format for messages, but we leave
freedom to developers with respect to the allowed vocabulary of communicative
action types (called performatives in KQML, but see Ref. 15). Also, we do not
impose any content language. We have implemented a mail system for KQML

(propose ;; new performative
:language KIF
:sender A
:receiver B
:content (produce (or widget gadget) 299)
:conversation C1 ;; first new slot
:intent (explore fabrication possibility)) ;; second new slot.

Fig. 4. Message example.

Int. J. Coop. Info. Syst. 1996.05:275-314. Downloaded from www.worldscientific.com
by UNIVERSITY OF TORONTO on 08/27/13. For personal use only.

286 M. Barbuceanu & M. S. Foz

messages providing TCP/IP supported transport and mail services like persistent
storage of received KQML messages, visual tools for message browsing, composition,
sorting and general pattern based retrieval. The example in Fig. 4 illustrates the
form of extended KQML we are working with.

Fig. 5. KQMaiL system interface.

Figure 5 shows the screen for the interface to our KQML mail system (called
KQMaiL). Note the use of mail folders and the use of pattern based search to access
and visualize the contents of folders. Composing and sending out KQML messages
is similarly supported.

4.3. Agent and conversation management

The purpose of this layer is to describe and execute coordination protocols, i.e.
shared conventions about agent interaction. The main idea here is that agents
interact by carrying out structured conversations. To embody this model we pro-
vide explicit language constructs for defining the agents we deal with, the structure
of the conversations they carry out, the rules that describe conversation progres-
sion through states and input/output messages, the ways unexpected events are
treated during conversations. As an agent may have multiple conversations at the
same time, we also provide constructs for deciding which conversation to continue
next and when to suspend or resume a conversation (conversation management).

Int. J. Coop. Info. Syst. 1996.05:275-314. Downloaded from www.worldscientific.com
by UNIVERSITY OF TORONTO on 08/27/13. For persona use only.

Capturing and Modeling Coordination Knowledge for Multi-Agent Systems 287

As agents exist within environments, we also provide constructs for defining the
composition of environments and for controlling the activation of the agents in an
environment (agent management).

4.3.1. Agents and environments

In COOL, an agent is a programmable entity that can exchange messages within
structured “conversations” with other agents, change state and perform actions.
A COOL agent is defined by giving it a name and “plugging in” an interpreter
that selects and manages its conversations. The interpreter applies specially defined
control rules (called continuation rules) to determine which conversation to work on
next. In the following example we use an interpreter that also applies the knowledge
acquisition and debugging service (agent-control-ka) when selecting the next
conversation to work on:

(def-agent ’customer
:continuation-control ’agent-control-ka
:continuation-rules ‘(cont-1 cont-2 cont-3 cont-4))
(def-agent ’logistics
:continuation-control ’agent-control-ka
:continuation-rules ‘(cont-1 cont-2 cont-3 cont-4))
(def-agent ’plantl
:continuation-control ’agent-control-ka
:continuation-rules ‘(cont-1 cont-2 cont-3 cont-4)).

Agents carry out conversations with other agents or perform local actions within
their environment. Cooperating agents exist in local or remote environments. To
control agent execution within an environment, we use conversation managers.
A conversation manager defines the set of agents it manages, specifies a control
function that at each cycle selects an agent for execution and the instrumentation
(e.g. tracing, logging, etc.) of agent execution:

(def-conversation-manager ’mi
:agent-control ‘execute-agent
:agents ‘{customer logistics plantl ...)).

The purpose of the environment is to “run” agents by managing message pass-
ing and scheduling agents for execution. Environments exist on different sites (ma-
chines) and a directory service makes message transmission work just the same
among sites as within sites. This has the advantage that a set of COOL agents that
run in an environment that exists on a single machine will also run without any
modification in several environments on several machines. Thus, we can develop
and test on a single machine and then deploy with no modification (except for the
directory table) on the network. The environment also provides a wealth of tools for
visual manipulation — browsing, editing, environment set-up, animated execution.

Int. J. Coop. Info. Syst. 1996.05:275-314. Downloaded from www.worldscientific.com
by UNIVERSITY OF TORONTO on 08/27/13. For persona use only.

288 M. Barbuceanu & M. S. Fox

4.3.2. Conversations

Agents interact by carrying out “conversations”. Within a conversation, agents
exchange messages according to mutually agreed conventions, change state and
perform local actions. COOL provides a construct for defining generic conversa-
tions, the conversation class and a corresponding instance construct, the actual
conversation.

Conversation classes are rule based descriptions of what an agent does in cer-
tain situations (for example when receiving messages with given structure). COOL
provides ways to associate conversation classes to agents, thus defining what sorts
of interactions each agent can handle. A conversation class specifies the available
conversation rules, their control mechanism and the local data-base that maintains
the state of the conversation. The latter consists of a set of variables whose persis-
tent values {maintained for the entire duration of the conversation) are manipulated
by conversation rules. This data-base is the mechanism we currently provide for
agents to represent their “mental state” during the interaction represented by the
conversation. We do not enforce the use of variables describing explicit mental
states like “my current intention” or “my current obligation”, but developers can
use such a vocabulary if they feel it is appropriate. Conversation rules are indexed
on the finite set of values of a special variable, the current-state. Because of that
conversations admit a finite state machine representation that is often used for visu-
alization and animation purposes. VonMartial?® describes techniques for designing
consistent asynchronous conversations described by finite state machines.

Figure 6 shows the conversation class governing the Customer’s conversation
with Logistics in our supply chain application. Figure 7 shows the associated tran-
sition diagram of this conversation class. Arrows indicate the existence of rules that
will move the conversation from one state to another.

(def-conversation-class ’customer-conversation
:name ’customer-conversation
:content-language ’list
:speech-act-language ’kqml
:initial-state ’start
:final-states ’(rejected failed satisfied)
:control ’interactive-choice-control-ka
:rules ’((start cc-1)

(proposed cc-13 cc-2)

(working cc-5 cc-4 cc-3)
(counterp cc-9 cc-8 cc~7 cc-6)
(asked cc-10)

(accepted cc-12 cc-11))).

Fig. 6. Customer-conversation.

Int. J. Coop. Info. Syst. 1996.05:275-314. Downloaded from www.worldscientific.com
by UNIVERSITY OF TORONTO on 08/27/13. For personal use only.

Capturing end Modeling Coordination Knowledge for Multi-Agent Systems 289

rejected satisfied

Fig. 7. Finite state representation of customer-conversation.

Fig. 8. Conversation class editor.

Figure 8 illustrates the visual editor for creating or editing conversation classes,
with specialized machinery for editing the sets of rules indexed on the conversation
state.

Error recovery rules are another component of conversation classes (not illus-
trated in Fig. 6). They specify how incompatibilities among the state of a con-
versation and the incoming messages are handled. Such incompatibilities can have
many causes — message delays, message shuffling, lost messages, wrong messages
sent out, etc. Error recovery rules deal with this by performing any action deemed
appropriate, such as discarding inputs, initiating clarification conversations with
the interlocutor, changing the state of the conversation or just reporting an error.

Actual conversations instantiate conversation classes and are created whenever
agents engage in communication. An actual conversation maintains the current-

Int. J. Coop. Info. Syst. 1996.05:275-314. Downloaded from www.worldscientific.com
by UNIVERSITY OF TORONTO on 08/27/13. For persona use only.

290 M. Barbuceanu & M. S. Fozx

state of the conversation, the actual values of the conversation’s variables and var-
ious historical information accumulated during conversation execution.

Each conversation class describes a conversation from the viewpoint of an in-
dividual agent (in Fig. 6 the Customer). For two or several agents to “talk”, the
executed conversation class of each agent must generate sequences of messages that
the others’ conversation classes can process. Thus, agents that carry out an actual
conversation C actually instantiate different conversation classes internally. These
instances will have the same name (C) inside each agent, allowing the system to
direct messages appropriately (Fig. 9).

Agent= Al Agent = A2
Conversation Conversation
classes =Cl1,C3 classes = C2, C4
Conversation C Conversation C
[Instantiates Ci Instantiates C2]

Fig. 9. The same conversation instantiating different conversation classes.

4.3.3. Conversation rules

Conversation rules describe the actions that can be performed when the conver-
sation is in a given state. In Fig. 6 for example, when the conversation is in the
working state, rules cc-5, cc-4 and cc-3 are the only rules that can be executed.
Which of them actually gets executed and how depends on the matching and ap-
plication strategy of the conversation’s control mechanism (the :control slot).
Typically, we execute the first matching rule in the definition order, but this is easy
to change as rule control interpreters are pluggable functions that users can modify

(def-conversation-rule ’crn-1
:current-state ’start
:received ’(propose :sender customer
:content (customer-order :has-line-item 71i))

:next-state ’order-received
:transmit ’(tell :sender Tagent

:receiver customer

:content ’(working on it)

:conversation 7convn)
:do ’(put-conv-var ?conv ’?7order (cadr(member :content 7message)))
:incomplete nil).

Fig. 10. Conversation rule.

Int. J. Coop. Info. Syst. 1996.05:275-314. Downloaded from www.worldscientific.com
by UNIVERSITY OF TORONTO on 08/27/13. For persona use only.

Capturing and Modeling Coordination Knowledge for Multi-Agent Systems 291

at will. Figure 10 illustrates a conversation rule from the conversation class that
Logistics uses when talking to Customer about orders.

Essentially, this rule states that when Logistics, in state start, receives a pro-
posal for an order (described as a sequence of line-items), it should inform the
sender (Customer) that it has started working on the proposal and go to state
order-received. Note the use of variables like ?1i to bind information from the
received message as well as standard variables like ?convn always bound by the sys-
tem to the current conversation. Also note a side-effect action that assigns to the
?order variable of the Logistics’ conversation the received order. This will be used
later by Logistics to reason about order execution. Among possibilities not illus-
trated, we mention arbitrary predicates over the received message and the local and
environment variables to control rule matching and the checking and transmission
several messages in the same rule.

To help users access and modify rules easier, the system provides a browser for
conversation classes and a visual editor for the associated conversation rules.

4.3.4. Initiating conversations

When an agent wishes to initiate a conversation in which it will have the initiative, it
creates an instance of a conversation class. When this conversation instance is exe-
cuted, messages will be sent and received according to the conversation class. When
a message is sent to an agent, the sent performative must contain a : conversation
slot (an extension to KQML) that contains a conversation name that is shared
by the communicating agents. For example, agent a2 may send to agent al the
following message:

(propose :sender a2
:receiver al
:content (produce widget 100)
:reply-with rt
:conversation c1).

Agent a2 has an actual conversation named c1 that is managed by the rules of
one of a2’s conversation classes. If al has an actual conversation named c1, then
the rules in the conversation class that al associates to its c1 actual conversation
will be used. If receiver al has no conversation c1, the message is interpreted as
a request for a new conversation made by a2. In this case, al must retrieve and
instantiate a conversation class able to handle the communication.

Our current mechanism for retrieving the conversation class that will manage
a request for a new conversation is based on two elements. First, any message
that is a request for conversation may have an additional slot :intent (another
— and last — extension to KQML) that contains a description of the intent of the
requesting agent. The receiving agent tries to find a conversation class that matches
the expressed :intent of the sender. This is done by having conversation classes

Int. J. Coop. Info. Syst. 1996.05:275-314. Downloaded from www.worldscientific.com
by UNIVERSITY OF TORONTO on 08/27/13. For personal use only.

292 M. Barbuceanu & M. S. Fox

specify an :intent-test predicate that will be used with the actual :intent as
argument. If the test determines that a conversation class can serve the :intent of
a request, then the second element is used. This is a verification that in the initial
state of the selected conversation class there exists at least one rule that can be
triggered by the received message. If this is the case, a new (actual) conversation
controlled by the retrieved conversation class is created and the receiver agent will
use it as its conversation with the sender. Finally, if :intent is not specified in
the message, the receiver will select a conversation that in the initial state has rules
that accept the sent message.

'
TN T T A R e e A g T = T LB e o E B RS o T .~

P TRANSP2 | TRANSP1 | PLANT3 |PLANT2 |PLANT1 | CUSTOMER [LOGISTICS |

TRANSP2 TRANSPT PLANTY PLANT2Z PLANTY CUSTOMER LOGISTICS

Fig. 11. Setting up the initial conversation.

Figure 11 shows how a set of agents in an environment is interactively set-up
for execution within a conversation manager. For each agent, a pull-down menu
lists the conversation classes that exist for that agent. The user selects an initial
such class and creates an instance of it by simply naming it. Then, if the Manage
Conversations button is pressed, the system will start to execute conversations
beginning with the created conversation. Usually, we arrange things such that this
conversation sends messages to other agents which will then answer, and so on.

4.3.5. Continuing conversations

Another element of the framework is the ability of agents to specify their policies
of selecting the next conversation to work on. Since an agent can have many ongo-
ing conversations (some may be waiting for input, some may be waiting for other
conversations to terminate, others may be ready for execution), the way it selects
conversations reflects its priorities in coordination and problem-solving,.

The mechanism we use to specify these policies is continuation rules. Unlike
conversation rules and error recovery rules, which are attached to conversation
classes, continuation rules select from among the conversations of an agent and
hence are attached to agents.

Int. J. Coop. Info. Syst. 1996.05:275-314. Downloaded from www.worldscientific.com
by UNIVERSITY OF TORONTO on 08/27/13. For persona use only.

Capturing and Modeling Coordination Knowledge for Multi-Agent Systems 293

Continuation rules perform two functions. First, they test the input queue
of the agent and apply the conversation class recognition mechanism to initiate
new conversations. Second, they test the data base of ongoing conversations and
select one existing conversation to execute. Which of these two actions has priority
(serving new requests versus continuing existing conversations) and which request
or conversation is actually selected, is represented in the set of continuation rules
associated to the agent. Our agent definition mechanism allows the specification, for
each agent, of both the set of continuation rules and the continuation rule applier.

For illustration, the following continuation rule specifies that a new conversation
request is served if there exists a conversation class that accepts the first message
in the agent queue:

(def-continuation-rule ‘cont-1
:input-queue-test #’exists-conv-class-initially-accepting-1st-msg).

4.3.6. Nested conversation execution

Nested conversation execution is a conversation execution mode in which the current
conversation of an agent is suspended, another conversation is created or continued,
with the former conversation being resumed when specified conditions hold (like
termination of the spawned conversation). Nested conversation execution of this
kind makes it possible to break complex protocols into smaller parts that will be
executed much like coroutines in some programming languages. This is important
in applications where protocols are complex and need to be broken into manageable
pieces.

The mechanism is appropriate in situations like the following. An agent a,
that has an ongoing conversation with an agent b, needs sometime during that
conversation to start a new conversation with an agent ¢, for example to acquire
information, to achieve a goal or to correct an error. Second, an agent a having
a conversation with an agent b is interrupted during this conversation by a higher
priority request from an agent c.

To allow for these situations, we let each agent have a set of ongoing conversa-
tions. When an agent initiates a new conversation, the new conversation instance
is added to this set. When a conversation has to be interrupted because another
conversation must take place, the old conversation is suspended, and the system
marks the suspended conversation as waiting for the new conversation to reach a
certain state (in which some condition is true). This creates dependency records
among conversations that are used when selecting the next conversation to work on.
Because conversations can be inspected, the states and variable values of a conver-
sation that another conversation waits for can be used by the waiting conversation
when the latter is resumed.

For example, consider again the multiagent supply chain. The Customer agent
may have a conversation with the Logistics agent about a new order. Logistics may
temporarily suspend this conversation to start a conversation with a Plant agent

Int. J. Coop. Info. Syst. 1996.05:275-314. Downloaded from www.worldscientific.com
by UNIVERSITY OF TORONTO on 08/27/13. For persona use only.

294 M. Barbuceanu & M. S. Fox

to inquire about the feasibility of a due date. Having obtained this information,
Logistics will resume the suspended conversation with Customer. This mechanism
is intensively used in the logistics execution protocol discussed in Section 7.

4.3.7. Pluggable rule interpreters and operation regimes

We have shown that the definitions of both agents and conversation classes have
control slots for specifying the interpreters that will handle agent execution and
respectively conversation execution. Users can freely develop and use their own
interpreters. Up to now we have a number of interpreters for basic operation modes
of the system. The basic (default) interpreters carry out conversation selection and
execution as explained above. Another set of interpreters support the knowledge
acquisition mode of the system explained further in Sec. 4.5. These interpreters
have the default behavior as a subset (that is they will function like the default
ones if there is no knowledge acquisition to perform) but have the added capability
of managing complex graphical interfaces that users employ to dynamically add,
refine or debug the coordination knowledge embedded in rules.

Both sorts of interpreters support an operation mode in which once a rule has
been found to be applicable, rather than applying it directly, a graphical interface
is spawned in which the user can inspect the current execution context, modify the
action part of the rule and apply it selectively or as a whole. The purpose of this
regime is to offer the foundation for combining rule execution with direct, interactive
user action. The actions available when executing a rule may be custom designed
to activate external applications, read data or results (from files, databases, etc.) or
perform any action in the environment whose effects or results may be needed before
or when executing the rule. In particular, active messages that come with attached
alternative actions the receiver should choose from in response — as supported by
systems like Strudel®® — can be implemented in this way. The rules that must
be executed in this manner are specially tagged in the source form by specifying a
function that will manage their execution (actually another pluggable interpreter).

4.3.8. Legacy software integration

To integrate legacy software, we simply employ the above conversation mechanism
in which we have rules that, rather than checking input messages and sending out
responses, activate the legacy application, communicate with it and reason about
its operation. This can be done in several ways, ranging from batch execution of an
application (by preparing input data, spawning its process, reading the produced
outputs) to dynamically interacting through its API functions.

4.4. Example: The supply chain

Going back to the supply chain, we implement the supply chain agents as COOL
agents and devise coordination protocols appropriate for their tasks. Figure 12

Int. J. Coop. Info. Syst. 1996.05:275-314. Downloaded from www.worldscientific.com
by UNIVERSITY OF TORONTO on 08/27/13. For personal use only.

Capturing and Modeling Coordination Knowledge for Multi-Agent Systems 295

asked

o @)

order-received

order-decomposed

form-large-
leam-cony

contractors-ranked

form-small-
leam-conyv

contractors-committed
small-team-formed C‘uj success

Fig. 12. Logistics execution protocol.

kick-off-
exXec-conv

shows the protocol that the Logistics agent executes to coordinate the entire supply
chain. The process starts with the Customer agent sending a request for an order
(according to customer-conversation shown in Figs. 6 and 7). Once Logistics
receives the order, it goes to state order-received. There, it checks that the order
is completely specified, in the sense that it contains all required information. If
this is not the case, it will ask specific questions form the Customer to fill in the
missing parts. If this is not possible, the conversation ends. When the order is
complete, the conversation goes to the order-decomposed state. Here, Logistics
tries to decompose it into activities like manufacturing, assembly, transportation,
etc. and to determine which agents will execute these activities. This is done
by running an embedded constraint based logistics scheduler. A rule attached on
this state prepares an input file for the scheduler, runs it and then parses the
produced output file to extract the activities required to complete the order and
the agents that are supposed to carry them out (note that both activities and
potential executors are determined by the logistics scheduler — for each activity
there can be several potential executors).

If this decomposition fails, Logistics will try to negotiate a slightly different
contract with the Customer (by going to state alternative-needed). If decom-
position succeeds, Logistics tries to form the team of contractors that will execute
the activities. This is done in two stages. First, a large team is formed. The large
team contains all ranked contractors previously determined by the logistics sched-
uler that have expressed interest to participate by executing the activity determined
previously by Logistics. Membership in the large team does not bind contractors
to execute their activity, it only expresses their interest in doing the activity. If
the large team was successfully formed (at least one contractor for each activity),

Int. J. Coop. Info. Syst. 1996.05:275-314. Downloaded from www.worldscientific.com
by UNIVERSITY OF TORONTO on 08/27/13. For persona use only.

296 M. Barbuceanu & M. S. Fox

then we move on to forming the small team. This contains exactly one contractor
per activity and implies commitment of the contractors to execute the activity. It
also implies that contractors will behave cooperatively by informing Logistics as
soon as they encounter a problem that makes it impossible for them to satisfy their
commitment. In both stages, team forming is achieved by suspending the current
conversation and spawning team forming conversations.

(def-conversation-rule ’lep-6
:current-state ’contractors-ranked
:such-that ’(not (get-conv-var 7conv ’?forming-large-team))
; to prevent multiple spawning of form-large-team-conv
:next-state ’contractors-ranked
:do-before ’(add-conversation logistics ’form-large-team-class
‘form-large-team-conv)
:do-after
’ (progn
(put-conv-var 7conv ’?forming-large-team t)
(put-conv-var (get-named-conv 7agent ‘form-large-team-conv)
’?ranked-contractors
(get-conv-var ?conv ’?ranked-contractors))
(put-conv-var (get-named-conv ?agent ‘form-large-team-conv)
'?result nil))
:wait-for ’(form-large-team-conv)
rincomplete nil)

Fig. 13. Rule spawning team forming conversation by Logistics.

For example, in state contractors-ranked we form the large team by hav-
ing Logistics start conversations with each contractor ranked for each activity,
in the ranking order. The rule presented in Fig. 13 shows how this happens.
First, the rule makes sure that the team forming conversation has not been al-
ready spawn (the :such-that condition). If this is the case, the action in slot
:do-before creates a new conversation named form-large-team-conv, of class
form-large-team-class. Then the action in the :do-after slot marks team form-
ing-as taking place, initializes the result variable of the new conversation and
transfers some data from the current conversation to the newly created one (this
is how new conversations receive the data they need to operate). The transferred
data consists of the list of ranked-contractors. The new form-large-team-conv
conversation will contact each ranked contractor to inquire if they are willing to
join the team. The :wait-for slot of the rule informs the system that the current
conversation will be suspended, waiting for the named conversation to reach some
state.

Int. J. Coop. Info. Syst. 1996.05:275-314. Downloaded from www.worldscientific.com
by UNIVERSITY OF TORONTO on 08/27/13. For personal use only.

Capturing and Modeling Coordination Knowledge for Multi-Agent Systems 297

Forming the small team is similar, Logistics will discuss with each member of
the large team until finding one contractor for each activity. In this case the ne-
gotiation between Logistics and each contractor is more complex in that we can
have several rounds of proposals and counter-proposals before reaching an agree-
ment. This is normal, because during these conversations contractual relations are
established, while the large team forming conversations had the purpose of only
expressing or confirming interest. How the dialogue between Logistics and each
contractor takes place when forming the small team is illustrated in Fig. 14 where
we show the form-small-team-class conversation class used by Logistics and the
answer-form-small-team-class conversation class used by the contractors.

© asked
ok
proposed
—
start counte:
& rejected
. O counterp
failed asked

Fig. 14. Team forming conversation classes (logistics and contractors).

An important aspect of the negotiation between Logistics and each contractor
in this conversation is that when a contractor counterproposes or rejects an activity,
it also reveals to Logistics a list of constraints that it cannot satisfy as the reason
for counterproposing or rejecting. Logistics uses these revealed constraints to make
a new proposal that would satisfy the revealed constraints or, in case of rejection,
remembers them when proposing to a new contractor. This mechanism is important
because it focuses negotiations on the problematic issues and thus makes them
converge rapidly.

When an activity is assigned to a contractor that will be part of the small team,
the other members of the large team are informed about that and asked if they
wish to remain in the large team for potential future assignments. If team form-
ing is successful, then we resume the suspended main conversation and move to
the next state. This is done by rules like that shown in Fig. 15. This particu-
lar rule, tried after the form-large-team-conv terminates, applies a test (in slot
:waits-for-test) on the form-large-team-conv conversation. The test checks

Int. J. Coop. Info. Syst. 1996.05:275-314. Downloaded from www.worldscientific.com
by UNIVERSITY OF TORONTO on 08/27/13. For persona use only.

298 M. Barbuceanu & M. S. Fox

(def-conversation-rule ’lep-7

:current-state ’contractors-ranked

:waits-for-test ’large-team-formed-test
;; tests that waited for conversation is terminated and if it
;5 has produced the team (in one of its variables) it sets the
;5 Tlarge-team variable in this conversation and returns t

:next-state ’large-team-formed

:incomplete t).

Fig. 15. Rule resuming execution of suspended conversation.

that the form-large~-team-conv has produced the required team in one of its vari-
ables. There is a similar rule checking the formation of the small team.

In the small-team-formed state we continue with other newly spawned conver-
sations (according to the same pattern) with the team members to kick off execution.
After having started execution (which every team member in part acknowledges),
we move to state contractors-committed where Logistics monitors the activities
of the contractors. If contractors exist that fail to complete their activity, Logistics
will try to replace them with another contractor from the large team. The large
team contains contractors that are interested in the activity and are willingly form-
ing a reserve team, hence it is the right place to look for replacements of failed
contractors. If replacements cannot be found, Logistics tries to negotiate an alter-
native contract (alternative-needed) with the Customer. To do that, Logistics
relaxes various constraints in the initial order (like dates, costs, amounts) and uses
its scheduling tool to estimate feasability. Then, it makes a new proposal to the
Customer. Again, we may have a cycle of proposals and counter-proposals before
a solution is agreed on. If such a solution is found, the protocol goes back to the
order-received state and resumes execution as illustrated.

5. In Context Acquisition and Debugging of Coordination Knowledge

Coordination protocols for applications like supply chain integration are generally
very complex, hard to specify completely at any time and very likely to change
even dramatically during the lifespan of the application. Moreover, due to the
social nature of the knowledge they contain, such protocols are better acquired and
improved during and as part of the interaction process itself rather than by off-line
interviewing of experts. This is especially true in our application context where
many agents are supervised by users. Because of this, the coordination tool must
support:

(1) Incremental modifications of the protocols e.g. by adding or modifying knowl-
edge expressed in rules and conversation objects.

(2) System operation with incompletely specified protocols, in a manner allowing
users to intervene and take any action they consider appropriate.

Int. J. Coop. Info. Syst. 1996.05:275-314. Downloaded from www.worldscientific.com
by UNIVERSITY OF TORONTO on 08/27/13. For persona use only.

Capturing and Modeling Coordination Knowledge for Multi-Agent Systems 299

(3) System operation in a user controlled mode in which the user can inspect the
state of the interaction and take alternative actions.

We are satisfying these requirements by providing a subsystem that supports in
context acquisition and debugging of coordination knowledge. Using this system
execution takes place in a mixed-initiative mode in which the human user can decide
to make choices, execute actions and edit rules and conversation objects. The effect
of any user action is immediate, hence the future course of the interaction can be
controlled in this manner.

Essentially, we allow both conversation and continuation rules to be incomplete.
An incomplete rule is one that does not contain complete specifications of conditions
and actions. Since the condition part may be incomplete we do not really know
whether the rule matches or not, hence the system does not try to match the rule
itself. Since the action part may be incomplete, the system cannot apply the rule
either. All that can be done is to let the user handle the situation. Protocol
specifications may contain both complete and incomplete rules in the same time.
Incomplete continuation rules are encountered when the system tries to determine
the next conversation to work on. Incomplete conversation rules are encountered
when executing a given conversation. Assuming the usual strategy of applying the
first matching rule in the definition order, we can have two situations. The first is
when a complete rule matches. In this case it is executed in the normal way. The
second is when an incomplete rule is encountered (hence no previous complete rule
matched). In this case the acquisition/debugging regime is triggered. In this regime,
a graphical interface is popped up in which the user is presented information about
the context of rule execution. For conversation rules, this consists of the current
conversation, its status, variables, history, the message queue, the available rules
in the current state. The user can browse this information and view each available
rule in part. Also, the user can manipulate rules and the message queue by checking
rule conditions to determine applicability, editing a rule, creating new rules, moving
or removing messages. When the user feels sure about what to do he can execute
either an existing, a new, or a modified rule and can instruct the system about
retaining the new or modified rules for further use. In this way, the sets of rules are
incrementally modified (perhaps becoming complete) as more knowledge is added
to the system.

Figure 16 shows an example incomplete rule from the customer-conversation
that allows a user interacting with the Customer agent to answer (indeterminate)
questions from the Logistics agent.

The rule is incomplete in that it does not specify how to answer a question
— the :transmit part only contains the generic part of the response message. It
is designed to work under the assumption that once a question is received, the
user will formulate the answer interactively, using the graphical interface provided
by the acquisition tool. When the knowledge acquisition interface is popped up,
the user will have access to the received message containing the actual question.
Using whatever tools are available, the user can determine the answer. Then, the

Int. J. Coop. Info. Syst. 1996.05:275-314. Downloaded from www.worldscientific.com
by UNIVERSITY OF TORONTO on 08/27/13. For personal use only.

300 M. Barbuceanu & M. S. Fozx

(def-conversation-rule ’cc-13

:current-state ’proposed

:received ’(ask :sender logistics)

:next-state ’proposed

:transmit ’(tell :receiver logistics
:sender 7agent
:conversation 7convn)

:incomplete t).

Fig. 16. Incomplete conversation rule.

user can create a copy of the rule and edit the transmitted message to include
the answer. This rule can be executed (thus answering the question) and then
discarded. Alternatively, if the new rule contains reusable knowledge, it can be
retained, marked as complete and hence made available for automated application
(without bothering the user) next time.

The facilities provided by this service can be illustrated with examples from the
graphical interface of the service. To view the status of the conversation at the
time an incomplete rule was encountered, the acquisition service shows the screen
in Fig. 17. Here we have an instance of the logistics execution protocol as seen by
the Logistics agent. The finite state abstraction is depicted, together with a textual
presentation of the conversation and a browser for the conversation variables.

Another aspect of the conversation context is formed by the available rules. This
is shown in Fig. 18. The browser for conversation rules allows the user to inspect
the rules indexed on the current state (drawn as a larger circle). Rules can be

Fig. 17. Viewing the conversation status.

Capturing and Modeling Coordination Knowledge for Multi-Agent Systems 301

Fig. 18. Inspecting, editing and applying rules.

Int. J. Coop. Info. Syst. 1996.05:275-314. Downloaded from www.worldscientific.com
by UNIVERSITY OF TORONTO on 08/27/13. For personal use only.

Fig. 19. Inspecting and editing conversation history and messages.

Int. J. Coop. Info. Syst. 1996.05:275-314. Downloaded from www.worldscientific.com
by UNIVERSITY OF TORONTO on 08/27/13. For personal use only.

302 M. Barbuceanu & M. S. Fozx

checked for applicability in the current context, with the resulting variable bindings
shown so that the user can better assess the impact of each rule. The interface
allows the user to perform a number of corrective actions like moving a rule to a
different position or removing it from the conversation class. It is also possible to
invoke the rule editor, the conversation class editor (if there is something wrong
with the conversation class, such as a rule being indexed on the wrong state) or the
browser for classes and rules allowing the user to inspect other classes and rules in
the system. The effect of any of these modifications will be immediate. Finally, the
user can leave the interface and continue execution by applying a specified rule.
When the user needs more information about the history of conversation ex-
ecution, especially with respect to message exchange, the interface provides pre-
sentation and interaction facilities as shown in Fig. 19. First, the history of the
conversation can be traced by viewing the sequence of past states and the actions
performed in each state (received messages, rule triggered, transmitted message).
Second, the messages received (and not yet processed) by the conversation are also
displayed. Again, here we provide means for corrective actions, assuming that mes-
sage transmission is an important source of errors. Amongst them we mention
deleting messages and reordering messages in the conversation queue. To better
access the content of messages (especially if their number is large or if their content

Fig. 20. Editing, executing and learning rule actions.

Int. J. Coop. Info. Syst. 1996.05:275-314. Downloaded from www.worldscientific.com
by UNIVERSITY OF TORONTO on 08/27/13. For persona use only.

Capturing and Modeling Coordination Knowledge for Multi-Agent Systems 303

is complex) we provide pattern based search in which the set of messages is searched
for all messages that match a given pattern and we show the variable bindings for
the matched messages.

Finally, when the action part of an existing rule is not complete (like in Fig. 16)
or is not what the user needs, the service allows the interactive modification of the
action part before executing it. This is shown in Fig. 20. First, a set of forms
is available for presenting and editing the various slots of the action part (these
include the transmitted message, the next state and the side-effect actions). They
can be filled automatically from a selected rule. The user can edit these slots and
then execute them either separatedly or together. As rule execution may remove
messages from the conversation queue, messages shown in the previous part of the
interface can be marked as to be removed (or accepted) and actually removed when
desired. Arbitrary conditions testing for any conversation variables can be also
evaluated in this context to obtain more information. Finally, the modifications
performed to the action part can be saved into a new rule that can be “learned” by
the system, replacing the original one.

The treatment of incomplete continuation rule is similar, just that this time the
system acquires or debuggs control knowledge for conversation selection.

This service provides a unified debugging, development and acquisition envi-
ronment for cooperation knowledge that has proven invaluable when developing
complex multi-agent interactions. Our current policy is that, whenever a new pro-
tocol is designed, its first runs are always in this debugging mode (by marking all
rules as incomplete). This ensures that the right rules are executed at the right
time and helps to quickly detect and correct missing knowledge or other errors.

6. Coordinating Information Distribution and Conflict Management

Coordination is an ubiquitous aspect of multi-agent systems. In this section we re-
view two other services of the shell that require coordination to operate properly —
Cooperative Information Distribution and Cooperative Conflict Management.
These are complex multi-agent reasoning tasks that play a major role in managing
change across the supply chain.

6.1. Cooperative information distribution

A first requirement for building agents that are responsive to events is being able to
keep agents informed about relevant events. When the number of relevant events is
high and their occurrence cannot be predicted in advance — which is the case in the
supply chain — we can not propagate information only at explicit request, that is
by having every agent asking every other agent every minute if event “X” occured.
We need a way to automatically update agents whenever relevant things happen,
without relying on explicit demand. Cooperative information distribution is a way to
achieve this goal. It allows an agent to distribute information to other agents based
on the content of the information and the expressed interests of agents. Agents ex-
press an interest by posting a persistent query (once) that will be answered by other

Int. J. Coop. Info. Syst. 1996.05:275-314. Downloaded from www.worldscientific.com
by UNIVERSITY OF TORONTO on 08/27/13. For persona use only.

304 M. Barbuceanu & M. S. Fozx

agents whenever relevant information becomes available. If supplied information is
ever disbelieved, cooperative behavior requires the producer of the information to
send retraction messages to all agents that have received it.

The essential capabilities needed to perform this function are:

(1) Being able to prove that a piece of information satisfies an expressed interest of
some agent.

(2) Being able to trace information that depends on retracted beliefs in order to
notify agents affected by retractions.

(3) Being able to coordinate information exchange according to this model.

In our system the proof part is performed by the classification and recogni-
tion services of the description logic language we use for knowledge management,!
dependency tracking is supported by the truth-maintenance service of the same
description logic and coordination of information exchange is supported by the co-
ordination framework. .

In our supply chain architecture we are supporting content based information
distribution with the help of Information Agents.? These are specialized agents that
collect information interests of other agents together with advertisements of what
information agents are willing to provide and on this basis mediate information ex-
change by routing information to interested agents, handling retraction notification
and executing the advertise-subscribe protocol that coordinates the process.

Information
Agent

Fig. 21. Information agent servicing functional agents.

;; Topic of interest and subscription of Transportation Agent:

(concept heavy-component ;s any component whose weight
(:and component (:gt weight 5000)));; is greater than 5000
(subscribe
:content (stream-about
:content (query heavy-component
[:alltime march-april 94])))

Fig. 22. Topics of interest and subscriptions.

Int. J. Coop. Info. Syst. 1996.05:275-314. Downloaded from www.worldscientific.com
by UNIVERSITY OF TORONTO on 08/27/13. For persona use only.

Capturing and Modeling Coordination Knowledge for Multi-Agent Systems 305

;5 Plant-1 to Information Agent:
(achieve :content (part-of p~111 c-12))
(achieve :content (weight c-12 2700[:starting feb 94]))

;; Plant-2 to Information Agent:
(achieve :content (part-of p-111 c-13))
(achieve :content (weight c-13 3400[:starting jan 94]))

;; Information Agent inferences:
(component p-111)

(weight p-111 6100 [:starting feb 94])
(heavy-component p-111 [:starting feb 94])

;3 Information Agent to Transportation Agent:
(tell :content (heavy-component p-111[march-april 941))

;; Plant-1 to Information Agent:
(deny :content (weight c-12 2700 [:starting april 941))
(achieve :content (weight c-12 1000 [:starting april 94]))

;; Information Agent to Transportation Agent:
(deny :content
(tell :content (heavy-component p-111 [march-april 941)))

Fig. 23. Content-based information distribution scenario.

The operation of this agent is illustrated in Figs. 21-23. Let us assume that the
Transportation Agent is interested to know in advance about produced components
that are heavy and thus require special arrangements to transport. It expresses this
interest as a KQML subscription to the Information Agent as shown in Fig. 22. As
the Information Agent is connected to the plants in the supply chain, it perma-
nently receives information updates about events like production of various parts.
Having a definition of what a heavy part means to Transportation and knowing
that subparts of the same part will be assembled together to form assemblies whose
weight is the sum of parts, the Information Agent is able to infer in which cases
heavy components are produced and inform Transportation about that. If informa-
tion is retracted, affected inferences are retracted as well and recipients of retracted
information notified. Figure 23 shows how these things happen, using KQML mes-
sages and propositional representations as content. Figuring out the structure of
the conversations that model this interaction is an easy exercise left to the reader.

6.2. Cooperative conflict management

Another important problem in multi-agent systems that manage dynamic events is

Int. J. Coop. Info. Syst. 1996.05:275-314. Downloaded from www.worldscientific.com
by UNIVERSITY OF TORONTO on 08/27/13. For persona use only.

306 M. Barbuceanu & M. S. Fox

dealing with conflicting information. When the future course of action of an agent
depends on conflicting information, the agent must make choices about what to
believe/dishelieve in order to continue. Our view is that deciding between what
to believe and what to disbelieve must be based on multi-dimensional reasoning
about information and the individual and social consequences of adopting/rejecting
beliefs. Cooperative behavior requires that decisions that impact other agents be
negotiated with them, thus making the conflict management process truly social.
The sort of information conflict that we are dealing with occurs from local
reasoning and communication as illustrated by the following general scenario:

(1) Agent-1 believes p and communicates it to Agent-3.

(2) Agent-2 believes ¢ and communicates it to Agent-3.

(3) Agent-3 believes p because it was communicated by Agent-1, ¢ because it was
communicated by Agent-2 and has local knowledge stating that p&q = false.

When this contradiction prevents Agent-3 from taking action, it has to be elim-
inated by retracting some current belief that supports either p or ¢. In this section
we address the issue of how to determine which of the possible supporting beliefs
to retract to reinstall consistency and how to behave cooperatively with the agents
that are affected by the retraction.

6.2.1. Credibility and utility of information

Consider again the supply chain. Assume that one customer expresses an intent
to place an order with a certain due date, for example (due-date 01 (13 march
95)) and involving materials from a certain supplier with which the plant already
has an on-going contract. In the same time, another customer expresses an intent
to place a second order, for example (due-date 02 (15 march 95)), with a due
date close to the first one, involving materials from a different supplier (with whom
there is no contract yet) but whose production cannot be scheduled in the same
time because the plant’s capacity would be exceeded. The plant has to make a
choice between the two customers before accepting a contract. Solving the problem
requires multi-dimensional reasoning involving evaluation of what is gained/lost if
either order is accepted. Among the questions to be answered in this evaluation
are the following. Which customer is more credible in its intent to place an order?
With which customer has the plant a more important relationship? Is any customer
more likely to be unable to pay in time? How costly will it be to receive materials
from the first supplier without using them or how costly will it be to cancel the
first supplier’s contract? How important is the relationship with each of the two
suppliers?

We classify the aspects dealt with by the above questions into two classes. The
first class comprises those properties of information that are relevant to its cred-
ibility, while the second considers the properties that are relevant to its utility.
Credibility measures the precedence of information coming from various sources.
It is based on things like the legal or organizational authority of the source, its

Int. J. Coop. Info. Syst. 1996.05:275-314. Downloaded from www.worldscientific.com
by UNIVERSITY OF TORONTO on 08/27/13. For persona use only.

Capturing and Modeling Coordination Knowledge for Multi- Agent Systems 307

reliability, the specificity or the recency of the communicated information. We as-
sume that we can estimate the aspects related to credibility and on that basis
estimate a unique numerical measure of credibility c,(b), for each belief b of any
agent a.

Estimating credibility is not enough to decide what to retract. We also need
to reason about the impact of retracting a belief over the entire system, in terms
of how much we lose if a belief is retracted in the existing situation. For exam-
ple, decisions might have been made based on beliefs, and retracting these beliefs
may imply undoing the decisions. This may cost money, may incur losing useful
relations or may affect one’s image. Another loss is that of potential gains that
we might had obtained by adopting the retracted belief. Examples in the supply
chain include retracting orders which causes undoing lots of planning/scheduling
work or retiring manufacturing machines which similarly may have big impacts on
scheduling decisions. We quantify these aspects in a measure of information utility.
The main aspects of information utility comes from include:

® Money costs. For example, assume that the plant decides to go for the second
customer and cancel the contract with the first supplier. This may incur paying
substantial penalties besides losing the first customer’s contract.

o Loss of credibility, relations or image. In the above example, besides losing money
the organization may affect its relations with the first customer and the supplier
whose contract was cancelled, and this may create a long range problem especially
if cancellation was unexpected or the partners are strongly affected.

We assume we can compute a numerical estimate of information utility — u, (b)
is the estimated measure of utility for information b as computed by agent a. Like
in the case of credibility, there can be many aspects that determine utility and their
complete delimitation may be possible only on the basis of each application domain
in part.

Credibility and utility affect belief retraction in the same sense: beliefs with high
credibility /utility are harder to retract. For credibility, this comes from the difficulty
of having to contradict a highly credible source. For utility, this comes from the
important consequences that retraction may have. The estimation of both utility
and credibility requires an agent to put itself into another agent’s place. As this may
be particularly hard to do, we allow agents to carry out confirmation conversations
in which the credibility and utility of beliefs are established. For example, an agent
may inquire a producer of information about how credible the information is, or a
consumer of information about how useful the information actually is. We assume
agents are honest when exchanging such estimates.

For information that is consumed and used by several other agents, the sum of
consumers’ utilities would normally be used to compute the overall utility. When
agents derive new information from existing information, the utility of derived in-
formation must be considerd when computing the overall utility.

Int. J. Coop. Info. Syst. 1996.05:275-314. Downloaded from www.worldscientific.com
by UNIVERSITY OF TORONTO on 08/27/13. For persona use only.

308 M. Barbuceanu & M. S. Fozx

6.2.2. What to retract and how to behave when retracting

Suppose now that we have determined a set {p;} of premises which supports a
p&cqg = false contradiction, in the sense that each p; is the starting point of a local
derivation chain supporting either p or g. A set {p;} thus defined is called a conflict
set for the given contradiction. Without going into details about how to obtain the
actual conflict set(s), let us attach to each p; its credibility and utility measures.
We can represent these two values by points in a diagram called a c-u space, as
illustrated in Fig. 24.

An important aspect of the approach is that when an agent decides to retract a
belief, it must exhibit cooperative behavior towards the other agents that share this
belief. The kind of required cooperative behavior depends on the credibility and
utility of the retracted belief. If these values are low, then it would be enough for
the agent to notify the others about the retraction. If these values are higher, the
agent may request advice before retracting. Finally, if these values are very high,
the agent may become_incompetent or unauthorized to decide on retracting, and
may need to request permission to retract. We capture these different behaviors
by distinguishing among several regions of the c-u space that contain beliefs whose
retraction requires different cooperative behavior of the agent. There are three
broad such regions (each may have subregions where the nature of cooperative
behavior may vary). Figure 24 shows these qualitative regions of the c-u space.

credibility
Request

Permission

Request
Advice

Iet

Inform

utility

Tut Aut

Fig. 24. Cooperative behavior regions in the c-u space.

(1) Belief is easy to retract. Propositions with low values of credibility and utility
— as defined e.g. by some threshold values Ic; and Ju; — are easy to retract
because we do not contradict highly credible sources and we are not likely to
produce serious consequences. An agent can unilaterally retract such a proposi-
tion. Cooperative behavior principles would however require agents performing
such retractions to inform the others about the retraction. Since retraction was
entirely decided by the agent, the agent also bears the entire responsibility for
the act.

Int. J. Coop. Info. Syst. 1996.05:275-314. Downloaded from www.worldscientific.com
by UNIVERSITY OF TORONTO on 08/27/13. For persona use only.

Capturing and Modeling Coordination Knowledge for Multi-Agent Systems 309

(2) Belief is harder to retract. Propositions with higher values for credibility or
utility — for example up to another set of thresholds like Ac; and Au; — are
harder to retract because credibility or authority now have significant values.
Since retractions from this zone imply either contradicting a credible source
or producing significant consequences, an agent will have to negotiate with
producers and/or consumers about retraction. At this level the negotiation
essentially consists of Requesting Advice w.r.t. retraction from producers and
consumers. Requesting advice implies that the agent presents its intention to
retract a shared belief to a producer or consumer and requests their opinion
about the retraction. A producer or consumer can advise on proceeding with
the retraction, cancelling it or be neutral. No matter what advice is received,
the agent will continue to be responsible for its decision.

(3) Belief is very hard to retract. Propositions whose credibility or utility is highest
— for example higher than the advise thresholds Ac; and Au; — go beyond the
decision authority of the agent, either because they come from a very important
source or because their consequences are too important for the agent to judge.
In this case, the agent’s behavior is that of Requesting Permission for retraction.
The agent will request permission from producers/consumers to retract a shared
belief. In this situation the agent is not competent enough to contradict the
source and/or has not enough authority in the organization to decide about
the consequences of this retraction. In this case, the problem is actually passed
on to somebody else and the responsibility of the agent is limited while the
responsibiliy of the interlocutors is dominant.

Based on these ideas we have built an interactive framework for contradiction
removal where the user makes the final decision about what to retract, how and
when and the system assists with tracing, presenting and evaluating the relevant
information. A visual interface allows the user to visualize the conflict set in the
c-u space and inspect or modify the credibility /utility values. Special conversation
classes specify the cooperative behavior of agents when performing retractions. As
shown, this behavior ranges from simple notification to more complex negotiation
for requesting advice or permission.

Unlike previous work on distributed truth-maintenance,®%45 our model places
more emphasis on reasoning and negotiation about how to solve conflicts and avoids
full automation of the process which is often plagued by arbitrary “algorithm-made”
decisions. By placing the human user back into the loop, we take advantage from
his/her situated reasoning abilities that can make decision making realistically use-
ful. References 54 and 56 are examples of previous work exploring negotiation as
a means to mediate among conflicting agents. Some recent approaches to conflict
resolution use prioritized defaults?” or model-theoretic solutions.3® They provide
semantic accounts of conflict resolution based on a single order of precedence of
beliefs. This is very useful, but still has to address the issues of computational
architectures and negotiation.

Int. J. Coop. Info. Syst. 1996.05:275-314. Downloaded from www.worldscientific.com
by UNIVERSITY OF TORONTO on 08/27/13. For persona use only.

310 M. Barbuceanu & M. S. Foz

7. Related Work

Our coordination system is related to a number of other efforts briefly reviewed
here. KQML'? is a high-level agent communication language that provides a mes-
sage format and a set of communication acts with informally specified semantics.
COOL can be seen as providing an operational semantics to KQML, as it defines the
structure of agent agreed message exchanges. As KQML does not have a declar-
ative semantics at the time of writing, it is hard to check if the operational use
of KQML in COOL conversations complies with the agreed meanings of KQML
acts and actually lets one introduce their own communication acts freely. This
impedes interoperability and reusability. When declarative semantics will be avail-
able, COOL protocols will be easier to check for proper use of KQML and this will
improve reusability for both COOL and KQML.

COOL is also related to a number of previous systems originating from the
computer supported cooperative work community, like Strudel,® Conversation
Builder®* and The Coordinator*?. In these systems the emphasis is on supporting
humans in performing their work. As such, users are required to directly gener-
ate communication acts and be aware of the obligations they create. Our work
extends these electronic conversation concepts for inter-agent coordination adding
standardized communication based on KQML, rule-based specifications at several
levels (agent control, conversation execution and exception handling) and knowl-
edge acquisition services. We use coordination structures in a context in which
programmed agents rather than human users are in direct contact with communi-
cation acts and their implications. This makes it possible for agents to mediate user
interaction in more varied and adequate ways.

ARCHON®? is a general purpose architecture used to develop agent systems in
real world domains like electricity distribution and supply. It supports large grain,
loosely coupled, and semi-autonomous agents. In ARCHON cooperation knowledge
had to be manually coded into a general representation language. We are trying to
improve on that by coming with more generic tools like COOL. We continue this
trend in our agent building shell by providing reusable, application independent
tools for other cooperative services related to information distribution and conflict
management.

Agent infrastructures for engineering are aimed at bringing previously isolated
design and engineering tools on-line. One set of solutions correspond to the
SHADE?® architecture: KIF as the interlingua, KQML as the speech act language,
and the use of facilitator agents (like the SHADE Matchmaker) that match and route
advertisements and subscriptions among the set of cooperating agents. Our agent
building shell supports facilitator-type services as cooperative information distribu-
tion services that any agent can provide if needed. With COOL we have advanced
in building an application independent coordination layer on top of KQML, making
it much easier to capture, use and reuse complex coordination protocols.

Finally, Ref. 46 is an important precursor of the work described here as it first
proposed a multi-layer enterprise information architecture that would integrate in-

Int. J. Coop. Info. Syst. 1996.05:275-314. Downloaded from www.worldscientific.com
by UNIVERSITY OF TORONTO on 08/27/13. For persona use only.

Capturing and Modeling Coordination Knowledge for Multi-Agent Systems 311

formation processing from the network communication layer to market based coor-
dination and negotiation.

8. Conclusions

While there exist several meanings of “agents” in the literature, our work builds
on agents understood as the high level building blocks of computing architectures
designed to interoperate globally on networks forming a virtual, unifying platform.
Critical enterprise applications like supply chain integration cannot be developed
and fully exploited unless such programming environments become available. From
the research perspective, attacking such applications requires the merger of theo-
retical work on the nature of agenthood and coordination with the development of
practical architectures and tools where principles can be tested, evaluated and ex-
ploited. Adopting the view that social interactions in artificial multi-agent systems
are described by a distinct level of knowledge and noticing the stringent need for
conceptualizations and systems operating at this level we have developed generic
agent building tools that are able to capture, represent and utilize this level of
knowledge. The social nature of coordination knowledge poses special problems,
not only because it confers its complexity, but also because this implies that coor-
dination knowledge can be acquired from or through the interaction process itself
rather than from off-line interviewing of experts. To add to these difficulties, there
are few paradigms to guide modeling of coordination by computer languages.

We have responded to these issues by building an application independent lan-
guage and programming environment that can be used to model, execute and ac-
quire coordination knowledge. We assume a communication act based model of
interaction and we devise a number of constructs for representing coordination con-
ventions. These include a programmatic notion of conversation with distinct rule
sets controlling conversation execution, conversation selection and exception han-
dling, constructs for agents and their environments, plug-in interpreters for con-
versation selection and execution and mechanisms for multiple conversation man-
agement. The programming environment we provide supports distributed agent
execution and visual instruments for browsing, editing and execution monitoring.
To deal with in context acquisition and debugging of coordination knowledge, we in-
troduce incomplete rules and provide an interactive acquisition environment which,
in requested circumstances, handles the control to users and supports them in ac-
quiring and modifying rules and conversation descriptions. Using these tools we
have developed complex reasoning services for information distribution and conflict
management well as complex coordination mechanisms for integrating multi-agent
supply chains of manufacturing enterprises.

Acknowledgments

This research is supported, in part, by the Manufacturing Research Corporation
of Ontario, Natural Science and Engineering Research Council, Digital Equipment

Int. J. Coop. Info. Syst. 1996.05:275-314. Downloaded from www.worldscientific.com
by UNIVERSITY OF TORONTO on 08/27/13. For persona use only.

312 M. Barbuceanu & M. S. Fox

Corp., Micro Electronics and Computer Research Corp., Spar Aerospace, Carnegie
Group and Quintus Corp.

References

1.

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

M. Barbuceanu, Models: Toward integrated knowledge modeling environments, Knowl-
edge Acquisition 5, 1993, 245-304.

. M. Barbuceanu and M. S. Fox, The information agent: An infrastructure for collab-

oration in the integrated enterprise, ed. S. M. Deen, Cooperating Knowledge Based
Systems, DAKE Centre, University of Keele, 1994, 257-295.

M. Barbuceanu and M. S. Fox, The architecture of an agent building shell, Proc.
Workshop on Agent Theories, Architectures and Languages, IJCAI 95, August 1995.
M. Barbuceanu and M. S. Fox, Conflict management with a credibility/deniability
model, ed. S. Lander, Proc. AAAI-94 Workshop on Models of Conflict Management
for Cooperative Problem Solving, AAAI Technical Report, 1994.

. M. Barbuceanu and M. S. Fox, COOL — A language for describing coordination in

multi-agent systems, ed. V. Lesser, Proc. First Int. Conf. on Multi-Agent Syst., AAAI
Press/The MIT Press, 17-24.

. A. Borgida, R. J. Brachman, D. L. McGuiness and L. Resnick, CLASSIC: A structural

data model for objects, Proc. 1989 ACM SIGMOD Int. Conf. on Management of Data,
1988, 59-67.

. R. J. Brachman and J. G. Schmolze, An overview of the KL-ONE knowledge repre-

sentation System, Cognitive Science 9, 2 (1985) 171-216.

. M. Bratman, Intentions, plans and practical reason (Harvard University Press, 1987).
. D. M. Bridgeland and M. N. Huhns, Distributed truth maintenance, Proc. AAAI-90,

1990, 72-77.

C. Castelfranchi, Commitments: From individual intentions to groups and organiza-
tions, Proc. First Int. Conf. on Multi-Agent Syst. (AAAI Press/The MIT Press, 1995)
41-48.

W. J. Clancey, Heuristic classification, Artificial Intelligence 27, 1985, 289-350.

P. R. Cohen and H. Levesque, Intention is choice with commitment, Artificial Intelli-
gence 42, 1990, 213-261.

P. R. Cohen and H. Levesque, Teamwork, Nous 15, 1991, 487-512.

P. R. Cohen, J. Morgan and M. Pollack, Intentions in communication (MIT Press
Cambridge, MA. 1990).

P. R. Cohen and H. Levesque, Communicative actions for artificial agents, ed. V.
Lesser, Proc. First Int. Conf. on Multi-Agent Syst. (AAAI Press/The MIT Press,
1995) 65-72.

K. S. Decker and V. Lesser, Designing a family of coordination algorithms, Proc. First
Int. Conf. on Multi-Agent Syst. (AAAI Press/The MIT Press, San Francisco, 1995)
73-80.

E. H. Durfee, Coordination of distributed problem solvers (Kluwer Academic Press,
1988).

E. H. Durfee and V. Lesser, Partial global planning: A coordination framework for
distributed hypothesis formation, IEEE Trans. on Syst., Man and Cybernetics 21, 6
(1991) 1363-1378.

T. Finin et al, Specification of the KQML agent communication language, The
DARPA Knowledge Sharing Initiative, External Interfaces Working Group, 1992.

M. S. Fox, Beyond the knowledge level, ed. L. Kerschberg, Expert Database Systems
(Benjamin/Cummings Publishing Company, 1987) 455-463.

M. S. Fox, A common-sense model of the enterprise, Proc. Industrial Engineering
Research Conf., 1993.

Int. J. Coop. Info. Syst. 1996.05:275-314. Downloaded from www.worldscientific.com
by UNIVERSITY OF TORONTO on 08/27/13. For persona use only.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Capturing and Modeling Coordination Knowledge for Multi-Agent Systems 313

M. S. Fox, M. Barbuceanu and M. Gruninger, An organisation ontology for enterprise
modeling: Preliminary concepts for linking structure and behavior, Proc. Fourth Work-
shop on Enabling Technologies, Infrastructure for Collaborative Enterprises (IEEE
Computer Society Press, 1995).

M. R. Genesereth and R. E. Fikes, Knowledge interchange format, Version 3.0, Refer-
ence Manual, Computer Science Department, Stanford University, Technical Report
Logic-92-1, 1992.

M. R. Genesereth and S. Ketchpel, Software agents, Comm. ACM 37, 7 (1994)
100-105.

M. P. Geogeff, A theory of action for multi-agent planning, Proc. National Conf. on
Al Austin, 1984, 1250-129.

R. McGregor and R. Bates, The LOOM knowledge representation language, ISI-IRS-
87-188, USC/ISI Marina Del Rey, CA, 1987.

B. N. Grosof, Conflict resolution in advice taking and instruction for learning agents,
IBM Research Report RC 20123, T. J. Watson Research Center, June 1995.

T. R. Gruber, Toward principles for the design of ontologies used for knowledge shar-
ing, Report KSL 93-04, Stanford University, 1993.

R. V. Guha and D. B. Lenat, CYC: A mid term report, Al Magazine 11, 3 (1990)
32-59.

N. R. Jennings, Towards a cooperation knowledge level for collaborative problem solv-
ing, Proc. 10th European Conf. on Al, Vienna, Austria, 1992, 224-228.

N. R. Jennings, Commitments and conventions: The foundation of coordination in
multi-agent systems, The Knowledge Engineering Review 8, 3 (1993) 223-250.

N. R. Jennings and E. Mamdani, Using joint responsibility to coordinate collaborative
problem solving in dynamic environments, Proc. 10th National Conf. on AI, San Jose,
CA, 1992, 269-275.

N. R. Jennings, Controlling cooperative problem solving in industrial multi-agent sys-
tems using joint intentions, Artificial Intelligence 75, 2 (1995) 195-240.

S. M. Kaplan, W. J. Tolone, D. P. Bogia and C. Bignoli, Flexible, active support for
collaborative work with conversation builder, CSCW 92 Proc., 1992, 378-385.

D. Kuokka, J. McGuire, J. Weber, J. Tenenbaum, T. Gruber and G. Olsen, SHADE:
Knowledge based technology for the re-engineering problem, Technical Report, Lock-
heed Artificial Intelligence Center, 1993.

Y. Labrou and T. Finin, A semantics approach for KQML — A general purpose
communication language for software agents, University of Maryland, 1993.

H. J. Levesque, P. R. Cohen and J. H. Nunes, On acting together, Proc. Eighth National
Conf. on Al Boston, 1990, 94-99.

J. Lin, Integration of weighted knowledge bases, To appear in Artificial Intelligence
Journal.

T. W. Malone and K. Crowston, Toward an interdisciplinary theory of coordination,
Center for Coordination Science Technical Report 120, MIT Sloan School, 1991.

F. vonMartial, Coordinating plans of autonomous agents, Lecture Notes in Artificial
Intelligence 610 (Springer-Verlag, Berlin, Heidelberg, 1992).

C. Mason and R. R. Johnson, DATMS: A framework for distributed assumption based
reasoning, eds. Les Gasser and Michael N. Huhns, Distributed Artificiall Intelligence,
Volume II (Pitman Publishing, London, 1989) 293-317.

J. McDermott, A taxonomy of problem solving methods, ed. S. Marcus, Automating
Knowledge Acquisition for Expert Systems (Kluwer Academic Press, 1988) 225-256.
R. Medina-Mora, T. Winograd, R. Flores and F. Flores, The action workflow approach
to workflow management technology, CSCW 92 Proc., 1992, 281-288.

Int. J. Coop. Info. Syst. 1996.05:275-314. Downloaded from www.worldscientific.com
by UNIVERSITY OF TORONTO on 08/27/13. For persona use only.

314 M. Barbuceanu & M. S. Fox

44.

45.

46.

47.

48.

49.

50.

51.
52.

53.

54.

55.

56.

R. Patil, R. Fikes, P. Patel-Schneider, D. McKay, T. Finin, T. Gruber and R. Neches,
The ARPA knowledge sharing effort: Progress report, eds. B. Nebel, C. Rich and W.
Swartout, Principles of knowledge representation and reasoning, Proc. Third Int. Conf.
(KR’92) (Morgan Kaufmann, San Mateo, CA, November, 1992).

C. Petrie, Revised dependency-directed backtracking for default reasoning, Proc.
AAAI-87, 1987, 167-172.

M. Roboam and M. S. Fox, Enterprise management network architecture: A tool for
manufacturing enterprise integration, Artificial Intell. Applications in Manufacturing
(AAAI Press/MIT Press, 1992).

S. R. Rosenschein and L. P. Kaebling, A situated view of representation and control,
Artificial Intell. 73, 1-2 (1995) 149-173.

J. Searle, Speech acts: An essay in the philosophy of language (Cambridge University
Press, Cambridge, UK, 1969).

J. Searle, Collective intentions and actions., eds. P. R. Coehn, J. Morgan and M. E.
Pollak, Intentions in Commun. (MIT Press, 1991) 401-416.

A. Shepherd, N. Mayer and A. Kuchinsky, Strudel — An extensible electronic conver-
sation toolkit, CSCW 90 Proc., 1990, 93-104.

Y. Shoham, Agent-oriented programming, Artificial Intell. 60 (1993) 51-92.

Y. Shoham and M. Tennenholtz, On social laws for artificial agent societies: Off-line
design, Artificial Intell. 73, 1-2 (1995) 231-252.

R. M. Smith, The contract net protocol: High level communication and control in a
distributed problem solver, IEEE Trans. on Computers 29, 12 (1980) 1104-1113.

K. Sycara, Multi-agent compromise via negotiation, eds. Les Gasser and Michael N.
Huhns, Distributed Artificiall Intelligence, Volume II (Pitman Publishing, London,
1989) 119-137.

B. J. Wielinga, A. Th. Schreiber and J. A. Breuker, KADS: A modeling approach to
knowledge acquisition, Knowledge Acquisition 4, 1, 1992.

G. Zlotkin and J. S. Rosenschein, Negotiation and task sharing among autonomous
agents in cooperative domains, Proc. IJCAI-89, Detroit, MI, 1989, 912-917.

