Appeared in Proceedings of Autonomous Agents '97, ACHM Press, Marina del Ray, Feb. 2-5.

Pp- 49 - 58,

Integrating Communicative Action, Conversations and Decision
Theory to Coordinate Agents

Mihai Barbuceanu and Mark S. Fox
Enterprise Integration Laboratory
Umiversity of Toronto,

4 Taddle Creek Road, Rosebrugh Building,
Toronto, Ontario, Canada, M5S 3G9
{mihai,msf}@ie.utoronto.ca

Abstract

The coordination problem in multi-agent systems is
the problem of managing dependencies between the
activities of autonomous agents, in conditions of in-
complete knowledge about the dynamically chang-
ing environment and about the actions, reactions and
goals of the agents populating it, such that to achieve
the individual and shared goals of the participants
and a level of coherence in the behavior of the sys-
tem as a whole. The paper articulates a precise con-
ceptual model of coordination as structured ”conver-
sations” involving communicative actions, amongst
agents. The model is extended to a complete lan-
guage design that provides objects and control struc-
tures that substantiate its concepts and allow the con-
struction of real multi-agent systems in industrial do-
mains. To account for the uncertainty of the envi-
ronment and to capture user’s prefernces about the
possible actions we integrate decision theoretic ele-
ments based on Markov Decision Processes. Finally,
to support incremental, in context acquisition and de-
bugging of coordination knowledge we provide an ex-
tension of the basic representation and a visual tool
allowing users to capture coordination knowledge as
it dynamically emerges from the actual interactions.
The language has been fully implemented and suc-
cessfully used in several industrial applications, the
most important being the integration of multi-agent
supply chains for manufacturing enterprises. This ap-
plication is used throughout the paper to illustrate the
introduced concepts and language constructs.

Introduction

Coordination has been defined as the process of manag-
ing dependencies between activities (Malone & Crow-
ston 91). An agent that operates in an environment
holds some beliefs about the environment and can use
a number of actions to affect the environment. Co-

ordination problems arise when (i) there are alterna-
tive actions the agent can choose from, each choice
affecting the environment and the agent and resulting
in different states of affairs and/or (ii) the order and
time of erecuting actions affects the environment and
the agent, resulting in different states of affairs. The
coordination problem is made more difficult as agents
usually have incomplete knowledge of the environment
and of the consequences of their actions and the envi-
ronment changes dynamically making it more difficult
to evaluate the current situation and the possible out-
comes of actions. In a multi-agent system, the environ-
ment is populated by other agents, each pursuing their
own goals and each endowed with their own capabili-
ties for action. In this case, the actions performed by
one agent constrain and are constrained by the actions
of other agents. To achieve their goals, agents will have
to manage these constraints by coordination.

In this paper we adhere to the view that the coor-
dination problem can be tackled by recognizing and
explicitely representing the knowledge about the inter-
aclion processes taking place among agents. Jennings
(Jennings 92) has coined the term ” cooperation knowl-
edge level” to separate the social interaction know-how
of agents from their individual problem-solving know-
how and to help focus efforts on coming with principles,
theories and tools for dealing with social interactions
for problem solving. We also believe that principles
and theories must be put to work in real applications,
and a major and often neglected way of doing this is
by consclidating them into usable languages and tools.

Our contribution in this sense is the articulation of
a model of "agent interactions” as knowledge driven
structured conversations and its consolidation into a
practical language design and implementation. The
language, named COOL (from COOrdination Lan-
guage), has been used in several industrial multi-agent
systems, the most important of which is suppply chain
integration, thoroughly used in this paper to illustrate
the concepts and constructs of our system.



Assumptions and Basic Ideas

While coordination can be defined as above, with-
out making assumptions about the ways to achieve it,
building a practical language for representing coordi-
nation can not be done without clearly stating such
assumptions as its foundation. The assumptions on
which our language is built are as follows.

1. Autonomous agents have their own plans according
to which they pursue their goals.

2. Being aware of the multi-agent environment they
are in, agents plans explicitely represent interactions
with other agents. Without loss of generality, we as-
sume that this interaction takes place by exchanging
messages.

3. Agents can not predict the exact behavior of other
agents, but they can delimitate classes of alterna-
tive behaviors that can be expected. As a conse-
quence, agents plans are conditional over possible
actions/reactions of other agents.

4. Agents plans may be incomplete or inaccurate and
the knowledge to extend or correct them may be-
come available only during execution. For this rea-
son, agents are able to extend and modify their plans
during execution.

The most important construct of the language is the
conversation plan. Conversation plans specify states
and associated rules that receive messages, check lo-
cal conditions, transmit messages and update the lo-
cal status. COOL agents posess several conversation
plans which they instantiate to drive interactions with
other agents. Instances of conversation plans, called
conversations, hold the state of execution with re-
spect to the plan. Agents can have several active
conversations in the same time and control mecha-
nisms are provided that allow agents to suspend con-
versations while waiting for others to reach certain
stages and to dynamically create conversation hier-
archies in which child conversations are delegated is-
sues by their parents and parents will handle situa-
tions that children are not prepared for. Conversa-
tion plans represent uncertainty by associating prob-
abilities to the actions represented by rules. Users
preferences for various states and actions are repre-
sented as rewards associated with actions and states.
The theory of Markov Decision Processes (Bellman 57;
Puterman 94) is used to determine the optimal actions
to execute in order to maximize the expected accumu-
lated rewards of conversation plans.

Multi-agent systems built with this language operate
on the assumption of mutual comprehensibility. This

means that they are designed in such a way that, nor-
mally, an agent can retrieve a conversation or a con-
versation plan that handles a message received from
another agent. This guarantees that, normally, con-
versations would not get stuck because agents can not
understand a message. This assumption is weaker than
the assumption of cooperative systems, because it does
not presuppose any intentional stance of the agents.
On the other hand, we are aware of the limitations of
this assumption and we provide mechanisms that allow
agents to continue even when mutual comprehensibil-
ity is not satisfied. These come as recovery rules (which
can modify the execution status or the plan) and much
more important, as support for direct, in context, user
guidance which is used for debugging and knowledge
acquisition.

Integrating the Supply Chain

The supply chain of a modern ”virtual” enterprise is a
world-wide network of suppliers, factories, warehouses,
distribution centres and retailers through which raw
materials are acquired, transformed into products, de-
livered to customers, serviced and enhanced. In order
to operate efficiently, supply chain functions must work
in a tightly coordinated manner. But the dynamics of
the enterprise and of the world market make this diffi-
cult: customers change or cancel orders, materials do
not arrive on time, production facilities fail, workers
are ill, etc. causing deviations from plan. In many
cases, these events can not be dealt with locally, i.e.
within the scope of a single supply chain ”agent”, re-
quiring several agents to coordinate in order to revise
plans, schedules or decisions. In the supply chain, our
ability to enable timely dissemination of information,
accurate coordination of decisions and management of
actions among people and systems is what ultimately
determines the efficient achievement of enterprise goals
and the viability of the enterprise on the world market.

We address these coordination problems by orga-
nizing the supply chain as a network of cooperating
agents, each performing one or more supply chain func-
tions, and each coordinating their actions with other
agents. Figure 1 shows a multi-level supply chain. At
the enterprise level, the Logistics agent interacts with
the Customer about an order. To achieve the Cus-
tomer’s order, Logistics has to decompose it into activ-
ities (including for example manufacturing, assembly,
transportation, etc.). Then, it will negotiate with the
available plants, suppliers and transportation compa-
nies the execution of these activities. If an execution
plan is agreed on, the selected participants will commit
themselves to carry out their part. If some agents fail
to satisfy their commitment, Logistics will try to find



enterprise level Warehousel

i ' @ Warehouse?2
Customer \@
Transportation
plant level T
Shop Plan)2
Resource

Mgr.a

Figure 1: Multi-level supply chain.

a replacement agent or to negotiate a different con-
tract with the Customer. At the plant level, a selected
plant will similarly plan its activities including pur-
chasing materials, using existing inventory, scheduling
machines on the shop floor, etc. Unexpected events
and breakdowns are dealt with through negotiation
with plant level agents or, when no solution can be
found, submitted to the enterprise level.

The Coordination Language
Communication

COOL has a communication component that uses an
extended version of the KQML language (Finin et al
92). Essentially, we keep the KQML format for mes-
sages, but we leave freedom to developers with re-
spect to the allowed vocabulary of communicative ac-
tion types. Also, we do not impose any content lan-
guage. This makes our approach practically indepen-
dent of KQML (any message language with commu-
nicative actions would do), although a standard would
be a marked advantage. The following example illus-
trates the form of extended KQML we are working
with.

(propose
:sender A
:receiver B
:language list
:content (or (produce 200 widgets)

(produce 400 widgets))
:conversation Ci ;; two new slots
:intent

(explore fabrication possibility))

;5 new communicative action

Agents and Environments

An agent is a programmable entity that can exchange
messages within structured ” conversations” with other
agents, change state and perform actions. A COOL
agent is defined by giving it a name, specifying the

(def-conversation-plan
’customer—conversation
:content-language ’list
:speech-act-language ’kgml
:initial-state ’start
:final-states
*(rejected failed satisfied)
:control ’interactive-choice~control-ka
:rules ’((start cc-1)
(proposed cc-13 cc-2)
(working cc-5 cc-4 cc-3)
(counterp cc-9 cc—8 cc-7 cc-6)
(asked cc-10 )
(accepted cc-12 cc-11)))

Figure 2: Customer-conversation.

conversation plan for its initial conversation and spec-
ifying the variables that form its local persistent data
base:

(def-agent ’customer
:initial-conversation-plan
’initial-conversation-plan).

When an agent is created, its initial conversation
starts running and while it runs, the agent is ”alive”.
Agents are run as lightweight processes inside environ-
ments that execute on local or remote sites. TCP/IP
is used at the transport level.

Conversations

Conversation plans are rule based descriptions of how
an agent acts in certain situations. COOL provides
ways to associate conversation plans to agents, thus
defining what sorts of interactions each agent can han-
dle. A conversation plan specifies the available con-
versation rules, their control mechanism and the local
data-base that maintains the state of the conversation.
The latter consists of a set of variables whose persis-
tent values (maintained for the entire duration of the
conversation) are manipulated by conversation rules.
Conversation rules are indexed on the values of a spe-
cial variable, the current-state. Because of that, con-
versation plans and actual conversations admit a graph
representation where nodes represent states and arcs
transitions amongst states.

Figure 2 shows the conversation plan governing the
Customer’s conversation with Logistics in our supply
chain application. Figure 3 shows the associated graph
of this conversation plan. Arcs indicate the existence
of rules that will move the conversation from one state
to another.



ask

rejected

start proposed counterp

1
//f::

accepted

working

satisfied

rejected

Figure 3:
conversation.

Graph representation of customer-

Error recovery rules are another component of con-
versation plans (not illustrated in figure 2). They spec-
ify how incompatibilities among the state of a conver-
sation and the incoming messages are handled. Such
incompatibilities can be caused by both planning and
execution flaws. Error recovery rules are applied when
conversation rules can not handle the current situa-
tion. They can address the problem either by modi-
fying the execution state - e.g. by discarding inputs,
changing the conversation current-state or just report-
ing an error - or by executing new plans or modifying
the current one - e.g. initiating a new clarification con-
versation with the interlocutor.

Actual conversations instantiate conversation plans
and are created whenever agents engage in communi-
cation. An actual conversation maintains the current-
state of the conversation, the actual values of the con-
versation’s variables and various historical information
accumulated during conversation execution.

Each conversation plan describes an interaction from
the viewpoint of an individual agent (in figure 2 the
Customer). For two or several agents to ”talk”, the
executed conversation plans of each agent must gen-
erate sequences of messages that the others’ conversa-
tion plans can process {according to the mutual com-
prehensibility assumption). Thus, agents that carry
out an actual conversation C actually instantiate dif-
ferent conversation plans internally. These instances
will have unique names (e.g. Customer-C) inside each
agent, allowing the system to direct messages appro-
priately.

Conversation Rules

Conversation rules describe the actions that can be
performed when the conversation is in a given state.

(def-conversation-rule ’lep-1
:current-state ’start
:received ’(propose :sender customer
:content (customer—order
thas-line-item 71i))
:next-state ’order-received
:transmit ’(tell :sender 7agent
:receiver customer
:content ’(working on it)
:conversation 7convn)
:do ’(update-var 7conv ’?order Tmessage))

Figure 4: Conversation rule.

In figure 2 for example, when the conversation is in
the working state, rules cc-5, cc-4 and cc-3 are the
only rules that can be executed. Which of them actu-
ally gets executed and how depends on the matching
and application strategy of the conversation’s control
mechanism (the :control slot). Typically, we exe-
cute the first matching rule in the definition order, but
this is easy to change as rule control interpreters are
pluggable functions that users can modify at will. Fig-
ure 4 illustrates a conversation rule from the conversa-
tion plan that Logistics uses when talking to Customer
about orders.

Essentially, this rule states that when Logistics, in
state start, receives a proposal for an order (described
as a sequence of line-items}), it should inform the sender
{Customer) that it has started working on the proposal
and go to state order-received. Note the use of vari-
ables like 711 to bind information from the received
message as well as standard variables like ?convn al-
ways bound by the system to the current conversa-
tion. Also note a side-effect action that assigns to the
?order variable of the Logistics’ conversation the re-
ceived order. This will be used later by Logistics to
reason about order execution. Among possibilities not
illustrated, we mention arbitrary predicates over the
received message and the local and environment vari-
ables to control rule matching and the checking and
transmission several messages in the same rule.

Our typology of rules also includes timeout, on-entry
and on-exit rules. Timeout rules have a :timeout slot
filled with a value representing a number of time units.
These rules are tried after the specified number of time
units has passed after entering the current state. Such
rules enable agents to operate in real time, for exam-
ple by controlling the time spent waiting for a message
or by ensuring actions are executed at well determined
time points. On-entry and on-exit rules are always exe-
cuted when a conversation enters (exits) a state. They
are useful for both mundane things like set-ups, clean-



(def-conversation-rule ’icci-1
icurrent-state ’process
:such-that °’(exists-runnable-or-waiting
7agent 7conv)

‘next-state ’process

:do ’(progn
(move—msgs—to—addressee—conv

?conv 7runnable)

(execute~conversation ?runnable)))

Figure 5: Conversation rule of the initial conversation.

ups or instrumentations and non-mundane activities
like strategic reasoning, as illustrated in a next sec-
tion.

The Initial Conversation

When an agent is created, its initial conversation starts
running. As long as this conversation is not termi-
nated, the agent is alive and active. All incoming
messages are dispatched by the initial conversation.
Sometimes they are dispatched to existing conversa-
tions, sometimes new conversations are created to han-
dle them (for example we define an :intent slot of
messages to help identify the conversation plans that
can handle messages with given intents). The initial
conversation is the ancestor of any conversation in the
system. As new conversations are created, they can
later create their own child conversations, incremen-
tally building trees of conversations. The message dis-
patch mechanism allows direct dispatch to known con-
versations, or various forms of top-down or bottom-up
forwarding of the message (possibly with annotations
added along the way) to several conversations. 'This
can emulate Brooks-like or hierarchical architectures.
Figure 5 illustrates one rule from one initial conversa-
tion plan. This rule checks if there exists a conversation
(immediately) runnable or waiting for messages and, if
so, forwards it its messages and then executes it.

Synchronized Conversation Execution

Normally, a conversation may spawn another one and
they will continue in parallel. When we need to syn-
chronize their execution, we can do that by freezing
the execution of one conversation until several others
reach certain states. This is important in situations
where an agent can not continue along one path of in-
teraction unless some conditions are achieved. In such
cases, the conversation that can not be continued is
suspended, the conversations that can bring about the
desired state of affairs are created or continued, and
the system ensures that the suspended conversation
will be resumed as soon as the condition it is waiting

for becomes true. The specification of this condition is
as an arbitrary predicate over the state of other con-
versations.

Integrating Decision Theoretic Planning

Decision theoretic planning integrates probabilities
and utilities in the planning process, with the goal of
producing plans that explicitely consider environment
uncertainity and user preferences, guaranteeing certain
classes of optimal behavior. The basic observation
is that conversations as described in COOL can be
clearly mapped to fully-observable, discrete-state
Markov decision processes (MDP) (Bellman 57;
Puterman 94). In this mapping, COOL states become
MDP states (always finite) and conversation rules
become MDP actions (again finite) that generate state
transitions when executed. Let S be the set of states
and A the set of actions of a COOL conversation plan
viewed as an MDP. We extend our representation
of conversation plans and rules as follows. First, we
define for each action (rule) a € A the probability
P(s,a,t) that action a causes a transition to state
t when applied in state s. In our framework, this
probability quantifies the likelihood of the rule being
applicable in state s and that of its execution being
successful. Second, we define for each action (rule) the
reward (a real number) denoting the immediate utility
of going from state s to state ¢ by executing action
a, R(s,a,t). (Note that a COOL rule can perform a
transition only from one given state to another, which
simplifies the computations described bellow). Since
COOQOL conversation plans are ment to operate for
indefinite periods of time, we use the theory of infinite
horizon MDP-s. A (stationary) policy = : s — A
describes the actions to be taken by the agent in
each state. We assume that an agent accumulates the
rewards associated with each transition it executes. To
compare policies, we use the expected total discounted
reward as the criterion to optimize. This criterion
discounts future rewards by rate 0 < 8 < 1. For any
state s, the value of a policy 7 is defined as:

Va (5) = R(S’ 71-(5)>t) =+ /BZtes P(S’ m(s), )V (1)

The value of = at any state s can be computed
by solving this system of linear equations. A policy
m is optimal if Vi (s) > Vii(s) for all s € S and all
policies 7/. A simple algorithm for constructing the
optimal policy for a given reward structure is value
iteration (Bellman 57). This is an iterative algorithm
guaranteed to converge under the assumptions of
infinite horizon discounted reward MDP-s. Value
iteration produces sequences of n-step optimal value



failed

start

10{0.3,3}

succeeded

rejected 03,1} counterp

Ordering produced by value iteration: proposed: 2,3,5 accepted: 9, 8, 10
counterp: 7,4,6 executed: 12, 11

Figure 6: Using value iteration to reorder rules.
functions V™ by starting with an arbitrary value for
V0 and computing

Vitl(s) =
B tes Pls,a, )V (1)}

mazqca{R(s,0,t) +

The values V* converge linearly to the optimal
value V*. After a finite number n of iterations, the
chosen action for each state forms an optimal policy
m and V" approximates its value. To stop the itera-
tion, an often used criterion requires termination when

Vit — Vi < e(1-0)/28

This ensures that V! is within ¢ of the optimal
function V* at any state.

The application of this theory to conversation plans
1s lustrated in figure 6. With each rule number we
show the probability and the reward associated to the
rule. We use the value iteration technique to actually
order the rules in a state rather than just computing
the best one. This is needed because of the conditional
nature of actions in COOL. The result of this is the
reordering of rules in each state according to how close
they are to the optimal policy. Since COOL tries the
rules in the order they are encountered, the optimal
reordering guarantees that the system will always try
the optimal behavior first. Of course, there are several
reward structures corresponding to different criteria,
like cost or time. To account for these, we actually
produce a separate ordering for each criterion. Then
a welghted combination of criteria is used to produce
the final ordering. In COOL we use on-exit rules to
dynamically estimate how well the system has done
with respect to the various criteria. If, for example, we
have spent too much time in the current plan, these
rules will notice that. When entering a new state, on-
entry rules look at the criteria that are under-achieved

and compute a new global criterion that corrects that
(e.g. giving time a greater weight). This new criterion
is used to dynamically reorder the rules in the current
state. In this way we achieve adaptive behavior of the
agent.

In Context Acquisition and Debugging
of Coordination Knowledge

Coordination structures for applications like supply
chain integration are generally very complex, hard
to specify completely at any time and very likely to
change even dramatically during the lifespan of the
application. Moreover, due to the social nature of the
knowledge contained, they are better acquired and im-
proved in an emergent fashion, during and as part of
the interaction process itself rather than by off-line in-
terviewing of users, which for widely distributed sys-
tems will be hard to locate and co-locate anyway. Be-
cause of this the coordination tool must support (i)
incremental modifications of the structure of interac-
tions e.g. by adding or modifying knowledge expressed
in rules and conversation objects, (ii) system operation
with incompletely specified interaction structures, in a
manner allowing users to intervene and take any action
they consider appropriate (iii) system operation in a
user controlled mode in which the user can inspect the
state of the interaction and take alternative actions.

We are satisfying these requirements by providing
a subsystem that supports in context acquisition and
debugging of coordination knowledge. Using this sys-
tem execution takes place in a mixed-initiative mode in
which the human user can decide to make choices, ex-
ecute actions and edit rules and conversation objects.
The effect of any user action is immediate, hence the
future course of the interaction can be controlled in
this manner.

Essentially, we allow conversation rules to be incom-
plete. An incomplete rule is one that does not con-
tain complete specifications of conditions and actions.
Since the condition part may be incomplete we don’t
really know whether the rule matches or not, hence the
system does not try to match the rule itself. Since the
action part may be incomplete, the system can not ap-
ply the rule either. All that can be done is to let the
user handle the situation. Interaction specifications
may contain both complete and incomplete rules in
the same time. Assuming the usual strategy of apply-
ing the first matching rule in the definition order, we
can have two situations. The first is when a complete
rule matches. In this case it is executed in the normal
way. The second is when an incomplete rule is en-
countered (hence no previous complete rule matched).
In this case the acquisition/debugging regime is trig-



(def-conversation-rule ’cc-13

:current-state ’proposed

:received ’(ask :sender logistics)

‘next-state ’proposed

:transmit ’(tell :receiver logistics
:sender 7agent
:conversation 7convn)

tincomplete t)

Figure 7: Incomplete conversation rule.

gered, with the user in control over what to do in the
respective situation, as explained further on.

Figure 7 shows an example incomplete rule from the
customer-conversation that allows a user interacting
with the Customer agent to answer (indeterminate)
questions from the Logistics agent.

The rule is incomplete in that it does not specify
how to answer a question - the :transmit part only
contains the generic part of the response message. It
is designed to work under the assumption that once a
question is received, the user will formulate the answer
interactively, using the graphical interface provided by
the acquisition tool. When the knowledge acquisition
interface is popped up, the user will have access to
the received message containing the actual question.
Using whatever tools are available, the user can deter-
mine the answer. Then, the user can create a copy of
the rule and edit the transmitted message to include
the answer. This rule can be executed (thus answer-
ing the question) and then discarded. Alternatively,
if the new rule contains reusable knowledge, it can be
retained, marked as complete and hence made avail-
able for automated application (without bothering the
user) next time.

The facilities provided by this service can be illus-
trated with examples from its graphical interface. To
view the status of the conversation at the time an
incomplete rule was encountered, the acquisition ser-
vice shows the finite state abstraction (like in figure
8). Here we have an instance of the logistics execu-
tion process as seen by the Logistics agent. A textual
presentation of the conversation and a browser for the
conversation variables are also available.

Another aspect of the conversation context is formed
by the available rules. This is also shown in figure 8.
The browser for conversation rules allows the user to
inspect the rules indexed on the current state (drawn as
a larger circle). Rules can be checked for applicability
in the current context, with the resulting variable bind-
ings shown so that the user can better assess the impact
of each rule. The interface allows the user to perform
a number of corrective actions like moving a rule to a

different position or removing it from the conversation
plan. It is also possible to invoke the rule editor, the
conversation plan editor or the browser for plans and
rules allowing the user to inspect other plans and rules
in the system. The effect of any of these modifications
will be immediate. Finally, the user can leave the in-
terface and continue execution by applying a specified
rule. Other services include presentation and browsing
of the conversation history and interactive, stepwise
modification and execution of rule actions. The mod-
ifications performed to the action part can be saved
into a new rule that can be ”learned” by the system.

Back to the Supply Chain

Going back to the supply chain, we implement the
supply chain agents as COOL agents and devise
coordination structures appropriate for their tasks.
Figure 9 shows the conversation plan that the Lo-
gistics agent executes to coordinate the entire sup-
ply chain. The process starts with the Customer
agent sending a request for an order (according to
customer-conversation shown in figures 2 and 3).
Once Logistics receives the order, it tries to decom-
pose 1t into activities like manufacturing, assembly,
transportation, etc. This is done by running an ex-
ternal constraint based logistics scheduler inside a rule
attached on the order~received state. If this de-
composition is not possible, the process ends. If the
decomposition is successful, the conversation goes to
state order-decomposed. Here, Logistics matches the
resulted activities with the capabilities of the existing
agents, trying to produce a ranked list of contractors
that could perform the activities.

If this fails, it will try to negotiate a slightly differ-
ent contract that could be executed with the available
contractors (state alternative-needed). If ranking
succeeds, Logistics tries to form a team of contractors
that will execute the activities. This is done in two
stages. First, a large team is formed. The large team
contains all ranked contractors that are in principle
interested to participate by executing the activity de-
termined previously by Logistics. Membership in the
large team does not bind contractors to execute their
activity, it only expresses their interest in doing the
activity. If the large team was successfully formed (at
least one contractor for each activity), then we move
on to forming the small team. This contains exactly
one contractor per activity and implies commitment of
the contractors to execute the activity. It also implies
that contractors will behave cooperatively by inform-
ing Logistics as soon as they encounter a problem that
makes it impossible for them to satisfy their commit-
ment. In both stages, team forming is achieved by sus-



ERATIVE-HEEDED
ERN-20 -

A ORI RN £

RN 1STR e rop-rECTED
CRIERBRACTORS- COMMITTED

Figure 8: Inspecting, editing and applying rules.

order-received 22,26

lternative-proposed

27

21

' alternative-needed
contract

tor-nceded

SuCCess

Figure 9: Logistics execution conversation plan

pending the current conversation and spawning team
forming conversations. When forming the small team,
Logistics similarly discusses with each member of the
large team until finding one contractor for each activ-
ity. In this case the negotiation between Logistics and
each contractor is more complex in that we can have
several rounds of proposals and counter-proposals be-
fore reaching an agreement. This is normal, because
during these conversations contractual relations are es-
tablished.

In the small-team-formed state we continue with
other newly spawned conversations with the team
members to kick off execution. After having started
execution, we move to state contractors-committed
where Logistics monitors the activities of the con-
tractors. If contractors exist that fail to complete
their activity, Logistics will try to replace them with
another contractor from the large team. The large
team contains contractors that are interested in the
activity and are willingly forming a reserve team,
hence it is the right place to look for replacements
of failed contractors. If replacements can not be
found, Logistics tries to negotiate an alternative con-
tract (alternative-needed) with the Customer. To
do that, Logistics relaxes various constraints in the
mnitial order (like dates, costs, amounts) and uses its
scheduling tool to estimate fesability. Then, it makes
a new proposal to the Customer. Again, we may have
a cycle of proposals and counter-proposals before a so-



lution is agreed on. If such a solution is found, the
conversation goes back to the order-received state
and resumes execution as illustrated.

The typical execution of the above coordination
structure has one or more initial iterations during
which things go as planned and agents finish work suc-
cesfully. Then, some contractors begin to lack the ca-
pacity required to take new orders (again this is de-
termined by the local scheduling engine that considers
the accumulated load of activities) and reject Logis-
tics’ proposal. In this case, Logistics tries to relax
some constraints in the order (e.g. extend the due
date to allow contractors to use capacity that becomes
available later on). If the Customer accepts that (af-
ter negotiation) then the new (relaxed) order is pro-
cessed and may eventually succeed. The reward struc-
tures used give preference to accomplishing work and
commitments above anything else, but prefers quick
rejections to long negotiations that terminate with re-
Jections. Least preferred is failure of committed work.
We usually run the system with 5-8 agents and 40-60
concurrent conversations. The COOL specification has
about 12 conversation plans and 200 rules and utility
functions. The Scheduler is an external process used
by agents through an API. All this takes less than 2600
lines of COOL code to describe. We remark the con-
ciseness of the COOL representation given the com-
plexity of the interactions and the fact that the size of
the COOL code does not depend on the actual num-
ber of agents and conversations, showing the flexibility
and adaptability of the representation.

Conclusions

We believe the major contribution of this work is
advancing a complete language design and an asso-
ciated programming system for a practical, applica-
tion independent language for describing and carry-
ing out coordination in multi-agent settings. Pre-
vious theoretical work has investigated related state
based representations (Rosenschein & Kaebling 95;
vonMartial 92) but has not consolidated the theoret-
ical notions into usable language constructs, making
it hard to use their ideas into applications. Vari-
ous formalizations of mental state notions related to
agency (Cohen & Levesque 90; Cohen & Levesque 91;
Levesque, Cohen & Nunes 90) have provided seman-
tic models that clarify a number of issues, but operate
under limiting assumptions that similarly make prac-
tical use and consolidation difficult. The work of (Jen-
nings 95; Jennings 92) provided part of the initial mo-
tivation for our approach to coordination as a domain
of knowledge to be explicitely represented and instru-
mented. Some conversational concepts have been used

by (Kaplan et al 92; Shepherd, Mayer & Kuchinsky 90;
Medina-Mora et al 92) in the context of collabora-
tive and workflow applications. We have extended
and modified them for use in multi-agent settings and
added things like knowledge acquisition, decision the-
oretic optimization and sophisticated control that led
to a more generic, application independent langunage.
Agent oriented programming (Shoham 93) is also re-
lated to our work as it similarly uses communicative
action, rules and agent representations. Our language
differs from AOP in the explicit provision of the con-
versation notion, the more powerful control structures
that emerge from it, the use of decision theretic ideas
and the more powerful programming environment in-
cluding the essential support for knowledge acquisition.

With respect to our own previously reported work
on COOL (Barbuceanu & Fox 95), this paper presents
important advances related to the decision theoretic el-
ements, the knowledge acquisition component and the
industrial application to supply chain management.

Being able to consolidate generic concepts and con-
structs into a language guarantees that developers of
multi-agent systems will be able to reuse coordination
structures and will be supported in building their own
by the high level notions embodied in the language.
As another contribution, we believe that recent ap-
proaches to agent communication like KQML (Finin et
al 92), by focusing exclusively on generic vocabularies
of communicative actions, have neglected the planning
and execution dimension of the coordination task, re-
quiring users to implement it from scratch. With a
language like COOL (which, we repeat, is in fact inde-
pendent of KQML), these aspects are well supported
and the expresiveness of KQML communicative actions
can be taken advantage of. With the support for deci-
sion theoretic elements, the language explicitely takes
into consideration users’ probabilities and preferences,
guaranteeing a certain notion of optimal behavior w.r.t
these quantifications. Finally, the language provides
the representational foundation for tackling the impor-
tant problem of acquiring dynamically emerging coor-
dination knowledge. We also report on this aspect in
(Barbuceanu & Fox 96).

The coordination language has been now evaluated
on several problems, ranging from well-known test
problems like n-queens to the supply chain of our
TOVE virtual enterprise (Fox 93) and to supply chain
coordination projects carried out in cooperation with
industry. In all situations, the coordination language
enabled us to quickly prototype the system and build
running versions demonstrating the required behavior.
Often, an initial (incomplete) version of the system has
been built in a few hours enabling us to immediately



demonstrate its functionality. We have built models
containing hundreds of conversation rules and tens of
conversation plans in several days. Moreover, we have
found the approach explainable to industrial engineers
interested in modeling manufacturing processes.

Our major priority at the moment continues to be
gathering empirical evidence for the adequacy of the
approach to industrial applications and for that mat-
ter we are jointly working with several industries. In
one project for example, we are using the system to
produce hard data characterizing how various coordi-
nation schemes affect the responsiveness and robust-
ness of supply chains.

Since our approach is in an essential way manag-
ing workflow, we have also started addressing orga-
nizational workflow modeling and enactment. Last
but not least, explaining the decisions and behavior
of multi-agent systems will become more and more im-
portant as we move into more complex applications.
Having explicit representations of coordination mech-
anisms forms the basis for providing explanations and
we are studying the issue as part of another joint effort
with industry.

Acknowledgments

This research is supported, in part, by the Manufac-
turing Research Corporation of Ontario, Natural Sci-
ence and Engineering Research Council, Digital Equip-
ment Corp., Micro Electronics and Computer Research
Corp., Spar Aerospace, Carnegie Group and Quintus
Corp.

References

M. Barbuceanu and M.S. Fox. COOL: A Language
for Describing Coordination in Multi-Agent Systems.
In Proceedings of the First International Conference
on Multi-Agent Systems(ICMAS-95), pp 17-24, SAn
Francisco, CA, june 1995.

M. Barbuceanu and M.S. Fox. Capturing and Model-
ing Coordination Knowledge for Multi-Agent System.
To appear in the International Journal of Intelligent
and Cooperative Information Systems, 1996.

Richard E. Bellman. Dynamic Programming. Prince-
ton University Press, Princeton 1957.

P. R. Cohen and H. Levesque. Intention is Choice with
Commitment. Artificial Intelligence 42, pp 213-261,
1990.

P. R. Cohen and H. Levesque. Teamwork. Nous 15,
pp 487-512, 1991.

T. Finin et al. Specification of the KQML Agent Com-
munication Language. The DARPA Knowledge Shar-

ing Initiative, External Interfaces Working Group,
1992,

M. 5. Fox. A Common-Sense Model of the Enter-
prise. In Proceedings of Industrial Engineering Re-
search Conference, 1993.

N. R. Jennings. Towards a Cooperation Knowledge
Level for Collaborative Problem Solving. In Proceed-
ings 10-th European Conference on Al, Vienna, Aus-
tria, pp 224-228, 1992.

N. R. Jennings. Controlling Cooperative Problem
Solving in Industrial Multi-Agent Systems Using
Joint Intentions. Artificial Intelligence, 75 (2) pp 195-
240, 1995.

S. M. Kaplan, W.J. Tolone, D.P. Bogia, C. Big-
noli. Flexible, Active Support for Collaborative Work
with ConversationBuilder. In CSCW 92 Proceedings,
pp378-385, 1992.

H. J. Levesque, P. R. Cohen and J. H. Nunes. On Act-
ing Together. In Proceedings of 8-th National Confer-
ence on Al, Boston, pp 94-99, 1990.

T. W. Malone and K. Crowston. Toward an Inter-
disciplinary Theory of Coordination. Center for Co-
ordination Science Technical Report 120, MIT Sloan
School, 1991

F. vonMartial. Coordinating Plans of Autonomous
Agents, Lecture Notes in Artificial Intelligence 610,
Springer Verlag Berlin Heidelberg, 1992.

R. Medina-Mora, T. Winograd, R. Flores, F. Flores.
The Action Workflow Approach to Workflow Man-

agement Technology. In CSCW 92 Proceedings, pp
281-288, 1992.

Martin L. Puterman. Markov Decision Processes:
Discrete Stochastic Dynamic Programming. Willey,
New York, 1994.

S. R. Rosenschein and L. P. Kaebling. A Situated
View of Representation and Control. Artificial Intel-
ligence 73 (1-2) pp 149-173, 1995.

A. Shepherd, N. Mayer, A. Kuchinsky. Strudel -
An Extensible Electronic Conversation Toolkit. In
CSCW 90 Proceedings, pp 93-104, 1990.

Y. Shoham. Agent-Oriented Programming. Artificial
Intelligence 60, pp 51-92, 1993.



