1446

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 21, NO. 6, NOVEMBER/DECEMBER 1991

Distributed Constrained Heuristic Search

K. Sycara, S. Roth, N. Sadeh, and M. Fox, Member, IEEE

Abstract— A model of decentralized problem solving is pre-
sented that is called distributed constrained heuristic search
(DCHS) that provides both structure and focus in individual
agent search spaces so as to optimize decisions in the global space.
The model achieves this by integrating decentralized constraint
satisfaction and heuristic search. It is a formalism suitable for
describing a large set of DAI problems. The notion of textures that
allow agents to operate in an asynchronous concurrent manner
is introduced. The employment of textures coupled with dis-
tributed asynchrenous backjumping (DAB), a type of distributed
dependency-directed backtracking that the authors’ have de-
veloped, enables agents to instantiate variables in such a way
as to substantially reduce backtracking. The authors’ approach
has been tested experimentally in the domain of decentralized
Jjob-shop scheduling. A formulation of distributed job-shop sched-
uling as a DCHS is presented as well as experimental results.

I. INTRODUCTION

N THIS PAPER, we present a framework for formalizing

a set of DAI problems by extending constrained heuristic
search (CHS) [11] to multiagent environments. A distributed
constrained heuristic search (DCHS problem) is a CHS prob-
lem where the solution is the result of cooperative multiagent
problem solving. The CHS problem solving paradigm ad-
dresses a subclass of problems that can be solved through state
space search. Similarly, DCHS addresses a subclass of DAI
problems that can be solved through distributed search. This
methodological commitment is consistent with other research
that formulates DAI problems in terms of search. We are
currently engaged in investigating and further developing the
CHS model in both single and multiagent settings.

The CHS problem solving model provides both structure
and focus to search in the problem space. The model achieves
this by combining the process of constraint satisfaction (CSP)
with heuristic search (HS). The resulting model both reduces
search complexity and provides a more formal explanation
of the nature and power of heuristics in problem solving.
Although both CSP and HS have been extensively studied
for single agent problem solving, with the notable exception of
[29], there have been no attempts at studying these formalisms
in a multiagent setting. However, formal investigations of dis-
tributed CSP and HS problem solving models is very important
because, as has been pointed out in [29], 1) Various DAI
problems can be formulated as distributed CSP or distributed
HS problems (e.g., {4], [18], [20]) and 2) distributed CSP and
HS models can provide formal frameworks for investigating

Manuscript received November 30, 1990; revised April 5, 1991. This work
was supported in part by the Defense Advance Research Projects Agency
under contract #F30602-88-C-0001, and in part by grants from McDonnell
Aircraft Company and Digital Equipment Corporation.

The authors are with the School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA 15213.

IEEE Log Number 9102934.

various DAI issues and methodologies, such as decision-
making coherence (e.g., [8]) and organizational redesign (e.g.,
(16]).

CHS integrates the synthetic capabilities of heuristics search
with the structural characteristics of constraint satisfaction
techniques. Constraint satisfaction algorithms are viewed as
taking giant steps, not creating new objects, but reducing the
entire space of objects to a satisficing set. (This assumes the
ability to enumerate a set of objects from which to choose.)
On the other hand, search techniques can be synthetic in that
they incrementally construct a solution as part of the search
process. In formulating the framework for distributed CHS, we
are concerned with the principles behind how knowledge can
be used to structure and guide asynchronous distributed search
in the problem space of individual agents so as to optimize
overall problem solving of the multiagent system (A problem
space is composed of an initial state that defines the problem’s
initial conditions, a set of operators that generate new states
and an evaluation function that identifies solution states.)

In this paper, we first review the elements of the CHS
problem solving model. We then introduce the definition
of DCHS and give the general process by which agents
perform asynchronous DCHS. Section IV formulates the dis-
tributed job-shop scheduling problem as a DCHS. The variable
and value ordering heuristics that have been developed are
presented in detail. Section IV-C presents distributed asyn-
chronous backjumping (DAB). Section V presents the commu-
nication protocol that allows concurrent asynchronous problem
solving by the agents. Section VI presents experimental results
and Section VII presents concluding remarks.

II. OVERVIEW OF CONSTRAINED HEURISTIC SEARCH

CHS augments the definition of a problem space, composed
of states, operators and an evaluation function, by refining a
state to include the following.

1) Problem Topology: Provides a structural characterization
of a problem.

2) Problem Textures: Provide measures of a problem topol-
ogy that allows search to be focused in a way that
reduces backtracking.

3) Problem Objective: Defines an objective function for
rating alternative solutions that satisfy a goal description.

This model allows us to 1) view problem solving as con-
straint optimization, thus taking advantage of optimization
techniques, 2), incorporate heuristic search, thus allowing
the dynamic modification of the constraint model, and 3)
extend constraint satisfaction to the larger class of optimization
problems.

0018-9472/91$01.00 © 1991 IEEE

SYCARA et al.: DISTRIBUTED CONSTRAINED HEURISTIC SEARCH

We define problem topology as a graph G, composed
of vertices V and edges E: V = NUCUS where N
is a set of variables {nj,n2,...,nm} C is a set of con-
straints {cy,c2,...,cm} S is a set of satisfiability specifica-
tions {51,82,...,S0)

Each variable in N may be a vector of variables whose
domains may be finite/infinite and continuous/discrete. Con-
straints are n-ary predicates over variables vertices. A con-
straint predicate is true iff the instantiations of these variable
vertices are compatible with each other. A satisfiability spec-
ification vertex groups constraints into sets of type AND,
OR, or XOR. An XOR satisfaction set denotes that only one
constraint in the set must be satisfied. Edges link constraint
vertices to variable vertices, and satisfiability specifications to
constraints. Finding a solution to a CHS problem consists in
finding an assignment of values to all variables that satisfies
all constraints and all satisfiability specifications.

We distinguish between two types of problem topologies in
the following definitions.

Definition 1: A completely structured problem is one in
which all nonredundant vertices and edges are known a priori.
This is true of all CSP formulations. :

Definition 2: A partially structured problem is one in which
not all nonredundant vertices and edges are known ptior to
problem solving. This definition tends to be true of problems
in which synthesis is performed resulting in new variables
and constraints (e.g., the generation of new subgoals during
the planning process).

Operators in CHS have many roles: refining the problem
by adding new variable and constraint vertices, reducing the
number of solutions by reducing the domains of variables (e.g.,
assigning a value to a variable vertex), or reformulating the
problem by relaxing constraints or omitting constraints and/or
variables.

The general CSP is a well-known NP-complete problem
[12]. There are however classes of CSP’s that do not belong
to NP, and for which efficient algorithms exist. The CHS
methodology is meant for those CSP’s for which there is
no efficient algorithm. A general paradigm for solving these
problems consists in using backtrack search (BT) [2], [14].
BT is an enumerative technique that incrementally builds a
solution by instantiating one variable after another. Each time
a new variable is instantiated, a new search state is created
that corresponds to a more complete partial solution. If, in the
process of building a solution, BT generates a partial solution
that it cannot complete (because of constraint incompatibility),
it has to undo one or several earlier decisions. Partial solutions
that cannot be completed are often referred to as deadend
states (in the search space). Because the general CSP is NP-
complete, BT may require exponential time in the worst-case.
Extensive experimentation with the centralized system [26],
suggests that CHS provides a methodology for reducing the
average complexity of BT by interleaving search with local
constraint propagation and the computation of texture-based
heuristics.

Local constraint propagation techniques are used to prune
alternatives that have become impossible due to earlier deci-
sions made to reach the current search state. By propagating

1447

the effects of earlier commitments as soon as possible, CHS
reduces the chances of making decisions that are incompatible
with these earlier commitments [21].

Typically, pruning the search space can only be done
efficiently on a local basis [22]. Hence local constraint propa-
gation techniques are not sufficient to guarantee backtrack-free
search. In order to avoid backtracking as much as possible
as well as reduce its impact when it cannot be avoided, we
need techniques for focusing the problem solver’s attention
opportunistically to promising decisions. In CHS, for search
to be well focused, that is to decide where in the problem
topology an operator is to be applied, there must be features
of the topology that differentiate one subgraph from another,
and these features must be related to the goals of the problem.
These features take the form of different types of constraint
interactions. CHS analyzes the pruned problem space in order
to determine critical variables, promising values for these
variables, promising search states to backtrack to, etc.' The
results of this analysis are summarized in a set of textures that
characterize different types of constraint interactions in the
search space. We have identified and are experimenting with
seven such problem textures: value goodness, constraint tight-
ness, variable goodness, variable tightness, constraint reliance,
and variable tightness with respect to a set of constraints [11].
These textures are operationalized by a set of heuristics to
decide which variable to instantiate next (so-called variable
ordering heuristics), which value to assign to a variable (so-
called value ordering heuristics), which assignment to undo in
order to recover from a deadend, etc. These textures generalize
the notion of constraint satisfiability or looseness defined by
[22] (Keng and Yun [17] have defined related “criticality” and
“cruciality” measures) and apply to both CHS’s (and CSP’s)
with discrete and continuous variables. We have generalized
these textures so they can be used in distributed CHS.

1II. DisTRIBUTED CHS

A distributed CHS problem is a problem where the variables
are distributed among a set of agents. Each agent is responsible
for a set of variables and their instantiation. Constraints
and satisfiability conditions exist among variables under the
jurisdiction of different agents. The instantiation of variables
must satisfy these constraints and satisfiability specifications.
We say that a distributed CHS problem is solved iff an
assignment is found of values to all variables of all agents
such that all constraints and satisfiability specifications are
simultaneously satisfied.

Distributed DCHS is a process carried out by a group
of agents each of which has 1) limited knowledge of the
environment, 2) limited knowledge of the constraints and
requirements of other agents, and 3) limited number and
amount of resources that are required to produce a system
solution. Global system solutions are arrived at by interleaving
of local computations and information exchange among the
agents. There is no single agent with a global system view.
In such an environment, DCHS is an incremental process.
Agents make local decisions about assignments of values to
particular variables at particular times during problem solving

1448

and a complete solution is formed by incrementally merging
partial solutions.

The distributed CHS problem has the following character-

istics:

* The global system goal is to assign in a distributed fashion
a set of values to a set of variables so that all constraints
are satisfied and backtracking is minimized.

* To achieve global solutions, agents have to make con-
sistent variable instantiations. In our model, the variable
instantiations are made concurrently and asynchronously.
Each agent instantiates the variables under its control and
communicates the variable values to agents that need to
know these values.

* Due to limited communication bandwidth, it is not pos-
sible for agents to exchange a complete set of specific
constraints.

* Because each agent has incomplete information, it is in
general impossible for each agent to assign consistent
values to variables such that constraints are satisfied using
only local information.

* Local computations could produce inconsistent value as-
signments, i.e., value assignments that lead to constraint
violations. When this happens one or more agent(s) has
(have) to backtrack and try again. Backtracking can have
major ripple effects on the network since it may invalidate
value assignments that other agents have made. Moreover,
asynchronous backtracking runs the risk of computing
irrelevant action based on obsolete information.

There are two remarks in order here with respect to back-
tracking. First, the standard chronological backtracking [21]
instantiates variables in some sequential order. In general back-
tracking search is exponential in the worst-case. The situation
is worse in distributed asynchronous backtracking. One way
to increase backtracking efficiency is through various forms
of dependency-directed backtracking [5], [6], [13]. We have
implemented a variant of dependency directed backtracking for
distributed, asynchronous problem solving, called distributed
asynchronous backjumping (DAB) that substantially reduces
distributed search (see Sections IV-C and VI).

Second, both empirical and analytical studies in the CSP
literature show that it is possible to reduce backtracking
by properly sequencing the order in which variables are
instantiated. As a consequence, a lot of research in CSP has
concentrated on developing good variable and value ordering
heuristics. A good variable ordering heuristic is to instantiate
the variables that are most tightly constrained. This way, the
system avoids investing a lot of time building partial solutions
that cannot be completed because some difficult variables had
not yet been instantiated. A good value ordering heuristic
to reduce backtracking is a least-constraining one, namely
one that leaves as much room as possible to other variables
and their values so that the current partial solution can be
completed without backtracking.

Because of the incomplete and asynchronously changing
information in the distributed case, the agents at each stage
of problem solving require additional constraint instantiation
guidance in the form of mechanisms to 1) predict and evaluate

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 21, NO. 6, NOVEMBER/DECEMBER 1991

the impact of their decisions on global system goals, 2)
form expectations and predictions about the constraints of
other agents, and 3) help focus the attention of the agents
on particular parts of their search space asynchronously and
opportunistically. Having good predictive measures is very
important in the distributed case because:

1) asynchronous backtracking is more costly when it in-
volves many agents (ripple effects)

2) since agents operate asynchronously and concurrently,
they may be called upon to estimate value assignments
that they may not need to consider until they have made
many other instantiations

3) since the agents operate asynchronously and concur-
rently, they have to predict and take into consideration
in their local decision-making the future needs of other
agents

4) since communication is costly the predictive measures
must be robust/predictive over many decisions

The textures that have been identified in the previous section
have been generalized to work for DCHS. Our hypothesis is
that these textures are good predictive measures of the impact
of local decisions on system goals and express expectations of
the difficulty of satisfying constraints at various parts of the
search space of agents. We have operationalized these textures
into a set of heuristics that direct search in individual agent
spaces.

Each agent’s DCHS asynchronous problem solving contains
the following steps:

* An initial state is defined composed of a problem topol-

ogy,

* Constraint propagation is performed within the state,

* Texture measures and the problem objective are evaluated

for the state’s topology,

* Operators are matched against the state’s topology, and

* A variable node/operator pair is selected and the operator

is applied.

The application of an operator results in either adding
structure to the topology, further restricting the domain of a
variable, or reformulating the problem (e.g., relaxation). The
results of operator application are then propagated both within
the agent (local constraint propagation step) and across agents
(a constraint communication step followed by a local con-
straint propagation step). If an inconsistency (i.e., constraint
violation) is detected during propagation, the agent employs
DAB. Otherwise the agent moves on and looks for a new
variable node/operator pair to apply. The process goes on until
all variables of all agents have been assigned consistent values
that satisfy all constraints and satisfiability specifications.

By allowing search to be performed concurrently and asyn-
chronously by several problem solving agents, we introduce
two groups of tradeoffs:

1) A group of design tradeoffs, which is found under
one form or another in the design of most distributed
systems. In order to maintain search efficiency at a level
comparable to that in the centralized setting (and hence
achieve higher overall responsiveness), agents in the
distributed system need to maintain a high degree of

SYCARA ¢f al.: DISTRIBUTED CONSTRAINED HEURISTIC SEARCH

2)

global system awareness. Within the centralized CHS
selting, system awareness is achieved via local constraint
propagation and texture computation. Unfortunately the
limited communication bandwidth of a distributed sys-
tem restricts the amount of information that can be
passed between portions of the search space that are
under the control of different agents. In other words
the limited communication bandwidth generally prevents
agents from attaining a level of awareness similar to
that in a centralized system. As a consequence there
is a trade-off between the amount of distribution and
the ability of the system to maintain a search efficiency
that entails an overall increase in system responsiveness.
For instance, in the factory scheduling domain, it is a
good practice to start scheduling bottleneck resources
first. Depending on the number of scheduling agents,
and the way jobs are distributed between these agents,
it is more or less difficult for the system as a whole
{o identify the bottleneck resources, and coordinate the
construction of the schedule around the scheduling of
these bottlenecks. Most distributed systems have to deal
with this trade-off under one form or another, as it
generally determines the proper level of distribution in
the system for a given bandwidth (or the necessary
bandwidth given a predetermined number of agents),
proper ways to partition the search space among a set
of agents, etc.

A group of tactical tradeoffs: Given a specific dis-
tributed system with a predetermined number of agents,
a fixed communication bandwidth, and a partitioned
search space, whose portions have been preallocated
to different agents in the system, there is still a large
number of tactical parameters that one can play with in
order to increase overall system responsiveness. In the
distributed CHS setting, these parameters include the se-
lection of the local constraint propagation mechanisms,
the texture-based heuristics, and the synchronization
protocols. All the tradeoffs influencing the selection
of these parameters in the centralized setting are still
present, but they have changed: they have become
more complex due to the limited bandwidth of the
system and the ability of the agents to perform some
computations asynchronously. Consider for instance the
relation between variable and value ordering heuristics.
When several agents are allowed to asynchronously
instantiate variables, they lose some of the benefits of
a good variable ordering. This problem can be remedied
in two ways: either by using a less constraining value
ordering heuristic (this would be equivalent to relaxing
the due dates of jobs requiring a bottleneck .resource)
and/or by introducing some synchronization between the
agents in order to enforce some degree of system-wide
variable ordering (e.g., enforcing that bottlenecks are
scheduled first by properly synchronizing the scheduling
agents). Clearly both approaches have their inconve-
niences and put additional strains on the communication
bandwidth. A less constraining value ordering heuristic
can only be allowed via additional computational efforts

1449

locally and/or via additional interagent communication.
Worse, using less constraining values typically translates
into poorer solutions. On the other hand, enforcing
synchronization between the agents can only be achieved
via additional interagent communication, and restricts
the amount of concurrent processing in the system.

In this paper, we assume a distributed architecture and
focus on the study of some of the tactical tradeoffs discussed
above. While the study of some of the design tradeoffs
identified above has been given some attention in the literature
(e.g., [3], [7], [9]), we do not know of any prior study of
the tactical tradeoffs discussed in this paper, namely those
involved in distributing the CSP/CHS paradigm. The next
section demonstrates the application of the distributed CHS
model to the problem of distributed job shop scheduling.

IV. DISTRIBUTED CHS JOB-SHOP SCHEDULING

Factory scheduling has been the subject of intense investiga-
tion by both Operations Research and Al communities (e.g.,
[1], [10], [15], [24], [27]). With few exceptions [23], [28],
there has been almost no research in distributed scheduling. On
the other hand, the Distributed Al community has focused its
attention primarily on problems where agents contend only for
computational resources, such as computer time and communi-
cation bandwidth (e.g., [3], [8]). In most real world situations,
however, allocation of (noncomputational) resources that are
needed by an agent to carry out actions in a plan is of central
concern. Hence, approaches and mechanisms are needed to
allow for cooperative distributed resource allocation over time
(i.e., distributed scheduling of resources).

The distributed job shop scheduling problem is viewed as a
distributed CHS problem where each activity is an aggregate
variable whose values are reservations. Our activity-based
approach to job-shop scheduling relies on the combination
of local constraint propagation techniques with texture-based
heuristic search [26]. A reservation consists of a start time and
a set of resources to be allocated to the activity. Each activity
constitutes a variable vertex in the problem topology. Activity
precedence constraints are binary constraints represented by
constraint vertices connected to two activity variable vertices.
A capacity constraint vertex is associated with each resource
and connected to all the variable vertices representing activities
that can possibly use the resource. Each capacity constraint
ensures that the corresponding resource will not be allocated
to more than one activity at any given time.

Formally, we will say that we have a set of scheduling
agents, I' = {a, 3,...}. Each agent « is responsible for the
scheduling of a set of orders O = {of,...,0%_}. Each order
of consists of a set of activities A'™ = {A[*,..., A]*} to be
scheduled according to a process plan (i.c., process routing)
that specifies a partial ordering among these activities (€.g.,
Af]a BEFORE Af]“). Additionally an order has a release date
and a latest acceptable completion date, which may actually
be later than the ideal due date. Each activity A% also requires
one or several resources ng(l <i< pf), for each of which
there may be one or several alternatives (i.e., substitutable

resources) Rf;’zfj(l < j < ¢k;@). There is a finite number of

1450

resources available in the system. Some resources are only
required by one agent, and are said to be local to that agent.
Other resources are shared, in the sense that they may be
allocated to different agents at different times.

We distinguish between two types of constraints: activity
precedence constraints and capacity constraints. The activity
precedence constraints together with the order release dates
and latest acceptable completion dates restrict the set of
acceptable start times of each activity. The capacity constraints
restrict the number of activities that a resource can be allocated
to at any moment in time to the capacity of that resource. For
the sake of simplicity, we only consider resources with unary
capacity in this paper. Typically the limited capacity of the
resources induces interactions between orders competing for
the possession of the same resource at the same time. These
interactions can take place either between the order of a same
agent or between the orders of different agents.

With each activity, we associate preference functions that
map each possible start time and each possible resource
alternative onto a preference. These preferences [10], [26]
arise from global organizational goals such as reducing order
tardiness (i.c., meeting due dates), reducing order earliness
(i.e., finished goods inventory), reducing order flowtime (i.e.,
in-process inventory), using accurate machines, performing
some activities during some shifts rather than others, etc.
In the cooperative setting assumed in this paper, the sum
of these preferences over all the agents in the system and
over all the activities to be scheduled by each of these agents
defines a common objective function to be optimized. The
sum of these preferences over all the activities under the

responsibility of a single agent can be seen as the agent’s

local view of the global objective function. In other words,
the global objective function is not known by any single
agent. Furthermore, because they compete for a set of shared
resources, it is not sufficient for an agent to try to optimize
his own local preferences. Instead, agents need to consider
the preferences of other agents when they schedule their
activities.

Fig. 1 displays a simple example with 2 agents: o and j.
Agent a has two orders: of and 0. Agent 3 also has two
orders: of and 05 . The activities required by each order are
specified along with their resource requirements. For instance,
order of has a process plan with 3 activities: A}® (which
requires resource R;), A3® (which requires resource Ro)
and A}™ (which requires resource Rs). The arrows between
the activities represent the precedence constraints (e.g., A1*
has to be performed before A3*,). In this simple example,
each activity has only one resource requirement, for each of
which there is only one alternative (e.g., Ri¢ = R;). In other
words the only variables in this problem are the activity start
times. We further assume that time has been discretized with a
granularity of 1, that all the activities have the same duration,
namely 3 time units, that all orders are released at time 0
and have to be completed by time 153! Resources R; , R
, and Rj are shared in this example, since they are required

! None of these assumptions is required by our scheduling system. They
simply make the example easier to understand.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 21, NO. 6, NOVEMBER/DECEMBER 1991

SHARED
RESOURCES

BEFORE

), —_—
LOCAL RESOURCE OF [p ——38 MONITORS
AGENT B ¢

Fig. 1. A simple problem with 3 agents, 4 orders, and 4 resources.

by both agent o and agent 8. On the other hand, resource
Ry is local to agent 3. Notice that resource R, is the only
resource to be required by 4 activities (one in each order). All
other resources are required by fewer activities. Later we will
see that this resource is the main bottleneck of the problem.
This example will also be used to illustrate how agents o
and 3 coordinate to identify this bottleneck and avoid making
conflicting reservations when scheduling operations requiring
a shared resource.

In our model we view each activity Aﬁf as an aggregate
variable (or vector of variables). A value is a reservation for an
activity. It consists of a start time and a set of resources for that
activity (i.e., one resource ngj for each resource requirement
R of A", 1 < i < p?).

Each agent asynchronously builds a schedule for the orders
he has been assigned. This is done incrementally by iteratively
selecting an activity to be scheduled and a reservation for
that activity. Each time a new activity is scheduled, new
constraints are added to the system that reflect the new
activity reservation. These new constraints are propagated
both within the agent (local constraint propagation step) and
across agents (a constraint communication step followed by
a local constraint propagation step). If an inconsistency (i.e.,
constraint violation) is detected during propagation, the system
backtracks. Otherwise the agent moves on and looks for a
new activity to schedule and a reservation for that activity.
The process goes on until all activities have been successfully
scheduled.

SYCARA et al.: DISTRIBUTED CONSTRAINED HEURISTIC SEARCH

If an agent could always make sure that the reservation
that he is going to assign to an activity will not result
in some constraint violation forcing him or other agents to
undo earlier decisions, scheduling could be performed without
backtracking. Because scheduling is NP-hard, it is commonly
believed that such look-ahead cannot be performed efficiently.
Instead the constraint propagation mechanism used in our
system is the one described in [19]. For sake of efficiency, this
mechanism does not attempt to guarantee total consistency, but
instead looks for two types of inconsistencies that are easy to
spot: violation of precedence constraints within an order, and
violation of capacity constraints between a group of scheduled
activities and one unscheduled activity. The conflicts that are
not immediately detected by this mechanism correspond to
violations of capacity constraints between several unscheduled
activities (These conflicts are only detected later on, typically
when all but one of the activities involved in the conflict have
been scheduled.) This is because this last type of conflict
appears to be more difficult to detect in general (possibly
requiring exponential time). Under these conditions, a reserva-
tion assigned by an agent to an activity may force other agents
or the agent himself to backtrack later on (This is already
the case in the centralized version of the scheduling problem.
Because of the additional cost of communication it is even
more so in the distributed case.) Consequently, it is important
to focus search in a way that reduces the chances of having
to backtrack and minimizes the work to be undone when
backtracking occurs. This is accomplished via two techniques,
known as variable (i.e., activity) and value (i.c., reservation)
ordering heuristics.

The variable ordering heuristic assigns a criticality measure
to each unscheduled activity; the activity with the highest crit-
icality is scheduled first. The criticality measure approximates
the likelihood that the activity will be involved in a conflict.
The only conflicts that are accounted for in this measure are
the ones that cannot be prevented by the constraint propagation
mechanism. By scheduling his most critical activity first, an
agent reduces his chances of wasting time building partial
schedules that cannot be completed (i.c., it will reduce both
the frequency and the damage of backtracking). The value
ordering heuristic attempts to leave enough options open to
the activities that have not yet been scheduled in order to
reduce the chances of backtracking. This is done by assigning
a goodness measure to each possible reservation of the activity
to be scheduled. Both activity criticality and value goodness
are examples of texture measures. The next two paragraphs
briefly describe both of these measures (For a more complete
description of these measures, the reader is referred to [25].)

A. Variable Ordering Scheduling Heuristic

As was just pointed out earlier, there are situations with
insufficient capacity that may go undetected for a while by the
constraint propagation technique, thereby causing the system
to backtrack later on. Accordingly a critical activity is one
whose resource requirements are likely to conflict with the
resource requirements of other activities. [26] describes a
technique to identify such activities. The technique starts by

1451

building for each unscheduled activity a probabilistic activity
demand. An activity A!*’s demand for a resource R“"v at
time ¢ is determined by the ratio of reservations that remam
possible for A and require using R,“J at time t over the
total number of reservations that remain possible for Ala
Clearly activities with many possible start times and resource
reservations tend to have smaller demands at any moment in
time, while activities with fewer possible reservations tend to
have higher ones.

In a second step, each agent aggregates his activity demands
as a function of time, thereby obtaining his agent demand. This
demand reflects the need of the agent for a resource over time,
given the activities that he still needs to schedule (Notice that,
an agent’s demand at some time ¢ for a resource is obtained by
simply summing the demands of ail his unscheduled activities
at time ¢. Because these probabilities do not account for limited
resource capacities, their sum may actually get larger than 1.).

Figs. 2 and 3 illustrate the process by which agent « and
(3 compute their total (agent) demands for resource Rs. For
instance, agent o has two activities requiring Rp: A}® and
AL®. In a first phase, the probabilistic demand of each of these
two activities was computed by agent «, as illustrated in Fig.
2. The computation is done as follows: Each agerit calculates
for each activity the set of remaining possible earliest-start-
times and latest-start-times after existing reservations have
already been taken into account. For example, activity A3® has
earliest-start-time of 3 and latest-start-time of 9 (to allow for
scheduling of its preceding activity A}®, and its succeeding
activity A3*). Similarly, activity A3* has carliest-start-time
of 3 and latest-start-time of 12 (to allow for scheduling its
preceding activity A?*). Assuming that no reservations have
been made yet, activity A3® has 7 possible reservations on R
whereas activity A2% has 10. Thus, the probabilistic demand
for resource Ry of Aé" for time interval [3, 4] is 1/7, for time
interval [4, 5] itis 1/7+ 1/7 = 2/7, for interval [5, 10], it is
3/7, for interval {10, 11] it is 2/7 and for interval [11, 12] 1/7.
The demand of activity A3® is calculated in a similar fashion.

The two demands are then added up by the agent; thereby
producing agent o’s total demand for R,. Notice that Al and
A2 have the same total demand. This total demand is equal
to their duration, but it has been spread over the different
possible start times of each activity. Because A}® has fewer
possible start times than A3* , its demand is more compact
than that of A2*.

Finally, for each shared resource, agent demands are ag-
gregated for the whole system thereby producing system-
aggregate demands that indicate the degree of contention
among agents for each of the (shared) resources in the system
as a function of time. Time intervals over which a resource’s
system aggregate demand is very high correspond to violations
of capacity constraints that are likely to go undetected by
the constraint propagation mechanism. The contribution of
an activity’s demand to the system’s aggregate demand for a
resource over a highly contended-for time interval reflects the
reliance of the activity on the possession of that resource/time
interval. It is taken to be the criticality of the activity.

In our example, agent o and agent § communicate their
agent demands for each of the shared resources to each other

1452 IEEE TRANSACTIONS ON SYS

TEMS, MAN, AND CYBERNETICS, VOL. 21, NO. 6, NOVEMBER/DECEMBER 1991

T os0
e - -
g o'ool L LA L) L L 1 1 L] L3 T T \J L] 1
0 1 2 3 4 5 6 7 & 8 10 11 12 13 14 15
time
()
R o050
] ozs:l
£ oo —
~° L] T T L L) L) L1 L T T T T T T T |
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
time
(®)
2 150
‘E" 1.25
g 100
o 075
T 050
g,’ 0.25 '_I'—I
2 0.00+ T T T T T —1
2 o 1 3 4 5 6 7 B 9 10 11 12 13 14 15
time
(©)

Fig. 2. Building agent o’s demand for resource Ry. (a) Activity Aé" ’s demand for Ry. (b) Activity A§° ’s demand for Ro.

(c) Agent a’s

demand for R».

Fig. 3. Building agent 3°s demand for resource Rs. (a) Act
(c) Agent 3’s

and aggregate them (i.e., take their sum) thereby obtaining the
system’s global demand for each resource as a function of
time. So each agent knows the global systemwide demand at
this point in time (To avoid the computational cost of a) each
agent exchanging its agent demand with every agent it shares
resources with, and b) replicating the systemwide aggregation
computation in each agent, in the implemented system, a
number of agents, called monitors, one for each resource,
play the role of systemwide demand density aggregators). The
exact communication protocol used by the scheduling agents
is described in Section V. Fig. 4 illustrates the aggregation
process for resource R25.% the end of this phase, agent o has

2Notice that in the case of resource Ry, there is no need for communication:
Ry is a local resource of agent 3.

T os0-
8 025 I
£
ma'oo Ly T L) L) R T ¥ € 1] T T T LU
© 0 1 2 3 4 5 6 7 8 9§ 10 11 12 13 14 15
time
(@
T os0-
S 0254
g o i
go-oo..‘.........--.ﬁ
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
time
(b)
1.
1
%1.00
o 075
T 050
gus
ga'wl LJ L] L T L) L) T L) T T L LJ Ll L
s 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
time

ivity A;‘}’s demand for R». (b) Activity :1;::‘3’5 demand for Rs.
demand for Rs.

three aggregate demand curves: one for each of the 3 shared
resources, and agent [has 4 aggregate demand curves: the
ones for the 3 shared resources and the one for its local
resource R4. These curves are represented in Fig. 5. Notice that
resource f2; has the largest peak of demand, thereby indicating
that it is the resource for which there is the highest contention
(i.e., the main bottleneck resource).

Agent o’s Demand for Ry Agent 3’s Demand for R,
Aggregate Demand for Resource R,

To choose the next activity to schedule, each agent first
looks at all the resource/time intervals on which it has some
nonzero demand and picks the one with the highest aggregate
demand. In our example, both agents o and 8 happen to have
their highest aggregate demand on resource Ry. Therefore they

SYCARA ¢t al.: DISTRIBUTED CONSTRAINED HEURISTIC SEARCH

1.50 5
1.25 -
1.00 4
0.75 4

1453

0.50 4
0.25
0.00

=

[1

aggregate demand

1.50 4
1.25 4
1.00 4
0.75 4
0.50 4
0.25 4
0.00

T
7 8

(@

ks L) T 1] 1} T 1
9 10 11 12 13 14 15
time

T T T T

2 3 4 5 6
T T T T T T
[1 2 3 4 5 6

aggregate demand

(®)

1.50
1.25
1.00
0.75
0.50
0.25

T T T
7 8 9

T 1) 1]) 1]
0 11 12 13 14 15
time

contention
peak

aggregate demand

0’ 00 L)) L) L) 1 T)
o 1

©

T T T T T T T 1
7 8 9 10 11 12 13 14 15

time

Fig. 4. Agent and aggregate demands for resource Ry. (a) Agent o’s demand for Ry. (b) Agent 3’s demand for Ry.
(c) Aggregate demand for resource Ro.

both select time interval [8,11] as being their most contended
one (The agents only consider time intervals of duration equal
to the average duration of the activities requiring the resource,
3 time units in this example. Two time intervals actually
qualify as most contended: [7,10] and [8,11]. We just assume
that the agents both pick [8,11]).

A second step to picking the activity to schedule next is for
each agent to pick its activity with the highest contribution
(i.e., highest criticality) to the aggregate demand for that
resource/time interval. A higher demand contribution of an
activity means that the activity is more likely to be involved
in a capacity constraint conflict. In the example, agent o
picks activity A}® as its most critical activity, since it is the
one (among its two activities contending for Ry that relies
most on the possession of that time interval (Fig. 6) (i.e., the
contribution of A}* to the demand peak is larger than that of
A2). Similarly agent 8 picks A;ﬁ as its most critical activity.

B. Value Ordering Scheduling Heuristic

Once an agent has selected the activity to schedule next,
it must decide which reservation to assign to that activity.
Here several strategies can be considered. One type of value
ordering heuristics is a least constraining one. The extremely
small number of feasible solutions to a scheduling problem
compared to the total number of schedules (including infeasi-
ble ones) that one can possibly generate is what has made least
constraining value ordering heuristics so attractive. Agents
using such heuristics attempt to select the reservation that is
the least likely to cause constraint conflicts with reservations of

other agents. In other words an agent will select the reservation
that will be the least constraining both to itself and to other
agents. This heuristic results in altruistic behavior on the
part of the agent.® Because agents in the decentralized case
schedule in an asynchronous fashion, and because of the high
cost of backtracking in such distributed systems, we expect a
higher need for least constraining behavior in a distributed
scheduling environment. LCV is a least constraining value
ordering heuristic where every reservation for an activity
Ay, is rated according to the probability that it would not
conflict with another activity’s reservation, if one were to first
schedule all the other remaining activities. This probability is
approximated in our model by the ratio (Dy;;(7))/(Dxi(T))
where Dy;;(7) is the selected activity’s individual demand on
each remaining available time interval (equal to the activity’s
duration), and D;}E;(T)Dilzg "(r), is the systemwide aggre-

3There exist a variety of value ordering heuristics, such as the greedy
value ordering strategy (GV) where an agent can select reservations based
solely on its local preferences, i.e., irrespective of its own future needs as
well as those of other agents. In addition, there exist value ordering strategies
that are intermediate between LCV and GV. These intermediate strategies
attempt to factor in the contribution of a reservation to the global objective
function together with the likelihood that selecting that reservation will result
in backtracking (either locally or for another agent). The ultimate choice of
an (intermediate) strategy is likely to depend on such factors as the time
available to come up with a solution, the load of the agents, anid the amount of
resource contention. Experiments in centralized scheduling [25], [26] indicate
that LCV-type heuristics are best at minimizing search, but usually result in
poor schedules since reservations are selected irrespective of their contribution
to the objective function. Value ordering heuristics of the greedy type usually
produce significantly better schedules, but result in extra backtracking (i.e.,
search takes longer).

1454 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 21, NO. 6, NOVEMBER/DECEMBER 1991

1.50 -
1.25 -
1.00 -
0.75
0.50 -
0.25 4
0.00

aggregate demand

1.50
1.25 4
1.00 4
0.75 4
0.50
0.25
0.00

T T T T 1 T 1) T 1
7 8 9 10 11 12 13 14 15
time

contention
peak

aggregate demand

1.50
125
1.00
0.75
0.50
0.25

l7 l8 9 10 11 12 13 1I4 1.5

time

aggregate demand

0.00

1.50
1.25
1.00
0.75
0.50

7 8 9 10 11 12 13 14 15
time

0.25

aggregate demand

0.00 I/

Fig. 5. Aggregate demands for the three shared resource R,

(b) Aggregate demand for R». (c) Aggregate

gate demand for that time interval. The reservation with the
largest such probability is interpreted as the least constraining
one and is selected for making a reservation.

Let us illustrate the calculation of the LCV heuristic in our
two-agent example. As has been mentioned before, using the
variable ordering heuristic, agent o has selected activity A3*
and agent /3 has selected activity Aéﬁ . Now each agent will use
the LCV heuristic calculation to determine the start time for its
activity on resource Ry. The possible start times for activity
Al® are 3, 4,5, 6,7, 8, 9. The probabilities that a reservation
made for each of these start times results in capacity conflicts
for each of these start times are correspondingly 0.44, 0.42,
0.37, 0.33, 0.29, 0.28, and 0.26. We illustrate the calculation
for start time 3: The activity demand over the interval {3, 6}
(since the duration of the activity is 3 interval units) is given
by 1/7 4 2/7 + 3/7 = 0.85. The system aggregate demand
over the same interval is given by 0.30 + 0.60 + 1.00 = 1.90
(the values can be read directly from the two upper graphs of
Fig. 6). The ratio 0.85/1.90 = 0.44. Since 0.44 is the largest
of the probabilities thusly calculated, 3 is picked by agent « as
the best start time for activity A3*. on resource Ry. Similarly,
since the probabilities for the possible start times 6, 7, 8, 9,

11 12 13 14 15
time

\,..
®
©
3

(d)

R3, R3 and the local resource Ry4. (a) Aggregate demand for R;.
demand for R3. (d) Aggregate demand for Ry.

10, 11, 12 of activity A;”@ of agent g[b] are 0.21, 0.29, 0.33,
0.35, 0.40, 0.44, and 0.46, agent [selects time 12 as the
least constraining start time for A;ﬁ . The least constraining
value ordering heuristic works as expected: the agents end up
selecting the nonoverlapping intervals {3, 6} and {12, 15}.
Notice that all this is done without agent o knowing about the
2 activities of agent 3, and without 8 knowing about those of
agent «: the agents only exchanged their total agent demands,
not their individual activity demands. In the LCV calculations
each agent uses only its own selected activity’s demand and
the systemwide aggregate activity and no other knowledge.

C. Distributed Asynchronous Backjumping

As was discussed earlier, search is directed by variable and
value ordering heuristics that select a resource, activity and
time interval to schedule at each state. Assuming no other
agent has reserved the resource interval, a reservation is made.

Although a resource has been allocated successfully to
one activity at each state, it is still possible that a sched-
uling decision will prevent one or more still unscheduled
activities from being scheduled within their start- and due-

SYCARA et al.: DISTRIBUTED CONSTRAINED HEURISTIC SEARCH

-1455

©
S 1o
1.
1
%1.00
o 075
5 050 contention
ga.fs peak
g;0~00.1......
%3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
time
(a)
‘c .
S 050
o ——
@ 0.00 femmp—ep————T— T T
© 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
time
(b)
°
2 o050
go.zs
%a'ool L T L L) LS 1 1
0o 1 2 4 5 7 8 9 10 11 12 13 14 15
time
(©
fi
Eooo:|
g . T L L L) L3 L] 1 T
0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
time
(d
b
S o
Eooo:| .
% - L} L 1 1 L T T T
o 1 2 3 5 7 8 9 10 11 12 13 14 15
time
(©

Fig. 6. Activity ordering by agent and 3. (a) Aggregate demand for resource Ry. (b) Activity A}=’s demand for Rs. (c) Activity
A2°’s demand for Ro. (d) Activity AP’s demand for Rs. (e) Activity A2P>s demand for Ro. '

date constraints, either directly or indirectly. For example,
a scheduling decision can directly prevent another activity
from being scheduled if it reserves a resource during the
only interval over which the unscheduled activity can use
the resource. Also, a decision can indirectly prevent an-
other activity from being scheduled because of capacity and
precedence constraints among activities. For example, the
time interval for which an activity is scheduled can result
in narrowing the range of remaining time intervals during
which activities following the scheduled activity in a process
plan can be scheduled. If the remaining time intervals for
these latter activities are ones during which their required
resources are unavailable, these latter activities cannot be
scheduled.

Although temporal propagation is not able to detect all
the indirect effects of a scheduling decision at each state,
it is possible to detect cases in which a scheduling decision
makes it impossible for at least one remaining activity to be
scheduled. We call this process feasibility checking and it is
performed at every state, after a reservation has been made.
Feasibility checking consists of: a) time bound propagation
based on activity precedence, and b) determining whether each
activity has at least one interval during which its required
resource is available.

If feasibility checking is successful, the scheduling process
continues to the next decision state. If it fails (for example
assume that feasibility checking failed for start-time 20 for
activity C in Fig. 7), in the standard centralized CSP chrono-
logical backtracking would occur (in the figure, the possible
start-times for an activity, instead of being associated with
new states, are denoted by lists appended to a state for better
readability). Chronological backtracking involves the undoing
of the last decision made by the system and substituting a
different one. In a centralized system, this usually involves
considering a different time interval for reserving a resource
for the activity scheduled in the last state (activity C in
Fig. 7). In the interests of readability, the Fig. depicts the
various possible time intervals for scheduling an activity,
just by the start time. When all remaining available time
intervals (50, and 80) have been attempted for scheduling C
and have failed feasibility checking, the backtracking process
will undo the reservation (start-time 10) for the activity and
resource scheduled in the previous state (activity B in Fig.
7) and attempt an alternative interval (Start-time 30) for the
previous state (state B). If activity B can be successfully
scheduled at another time interval, search will “return” to
attempt every possible time interval (including retrying the
previously unsuccessful start-time 20) for the now unscheduled

1456

(60, 70)

(20, 50, 80)

Fig. 7. Partial state space search.

activity (activity C). If activity B cannot be successfully
scheduled at any other time interval, then the process considers
an alternative interval for activity A, then “returns” to consider
reservations for the now unscheduled activity B and so on. As
a result, this process of making a reservation and feasibility
checking is incremental and simultaneously tests the effects
of all previous reservations made by an agent on activities
remaining to be scheduled.

In the multiagent system, other agents can make reservations
throughout an agent’s search in an asynchronous manner,
making it difficult for the agent to determine which set
of previous reservations were responsible for a constraint
violation when it is eventually detected. The task facing the
agent at this point (when a violation is detected) is to find
the last set of its own reservations that, together with those
made by other agents, does not violate constraints. In the
multiagent case, suppose a reservation has been made by
another agent since the last time our agent has performed
feasibility checking. Then, after making a reservation, our
agent performs feasibility checking and it fails. Chronological
backtracking is no longer efficient because it assumes that the
combination of all previous activity reservations prior to the
most recent reservation is still feasible. In fact, it may no
longer be the case that all previous reservations would pass
the feasibility test, since other agents’ reservations must be
considered too. Therefore, the question is which subset of an
agent’s previous reservations, combined with the other agents’
reservations will still produce a feasible state (one in which
it is feasible that the remaining unscheduled activities can be
scheduled).

Although chronological backtracking will eventually rec-
ognize this subset (if one exists) by trying every possible
time interval for each previous activity-state and performing
feasibility checking after each, the computational cost is
enormous (exponential in the number of activities searched).
To reduce the computational cost of backtracking, distributed
asynchronous backjumping has been developed.

The backjumping process is as follows:

When infeasibility of a reservation is detected, prior to
checking alternative reservations for this activity (and, if
necessary for previously scheduled activities), an agent undoes
the current infeasible reservation and tests to see whether the
reservation of the immediately previously scheduled activity
along with other agents’ reservations remains feasible.

* If yes, then another reservation for the current activity is
checked.
* If not, the process interleaves undoing of previous activity

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 21, NO. 6, NOVEMBER/DECEMBER 1991

reservations with feasibility checking until a combination
of previously made reservations of the agent along with
other agents’ reservations is feasible.

To compare, consider again backtracking in Fig. 7: notice
that before undoing activity C, every remaining time interval
is attempted for activity B. Similarly, before activity A’s
reservation is tested for feasibility, every time interval of B
must be tried (in combination with every time interval of C).
In contrast, consider the backjumping procedure in Fig. 7. If
the current reservation of activity C (start-time 20) is deemed
infeasible (assuming other agents have made reservations since
the last time feasibility testing was performed), the reservation
is undone and, instead of trying alternative time intervals for
C, backjumping performs feasibility testing on the remaining
(excluding considerations of reservations for C) set of already
made reservations (i.e., B and A’s current reservations at start-
times 10 and 60, along with the reservations made by other
agents). If this feasibility check fails, then B’s reservation
at start-time 10 is undone and the process is repeated (i.e.,
now only A’s reservation at start-time 60 along with the
reservations made by other agents are considered). Finally, if
A’s reservation is feasible, search will resume with a different
time interval on B (start-time 30). In this case, backjumping
has identified the first time interval tried for activity B as the
one that produced the infeasible state. This was accomplished
in just three tests. In contrast, it takes backtracking eight tests
to identify this situation. If A’s reservation is infeasible, then
an alternate time interval is considered for A and the process
resumes. If all of the agent’s reservations were undone and
still feasibility checking failed, it means that the reservations
made by other agents have forced the agent to an infeasible
scheduling situation (This has been observed in some of
our experiments where a particular decomposition of orders
among agents results in a subset of the agents finishing with
no backjumping whereas the remaining ones cannot find a
solution.)

V. THE COMMUNICATION PROTOCOL

In the decentralized case, we have a set of agents that
communicate in an asynchronous manner via message passing
and each of which has a set of orders to schedule on a set of
resources. Each order consists of several activities. Typically
some of the resources are required by several agents and
conversely, each agent requires some resources that are also
needed by others. Which particular resources are shared may
change with the set of orders to be scheduled. In our model, re-
sources are passive objects that are monitored by active agents.
Monitoring resources does not give an agent any preferential
treatment concerning the allocation of the monitored resources
but is simply a mechanism that enables the system to perform
load balancing and efficient detection of capacity constraint
violations. A capacity constraint violation (resource conflict)
is detected when an agent requests a resource reservation for an
activity for a time interval that is already reserved for another
activity. Monitoring agents perform the additional tasks of a)
integrating certain pieces of information for shared resources
(see step 4 of protocol below) so as to avoid duplication of

SYCARA et al.: DISTRIBUTED CONSTRAINED HEURISTIC SEARCH

effort, which would be the case if all agents were doing this
information integration, and b) keeping the calendar of the
resources they monitor. Typically, each agent in the system is
a monitoring agent for some shared resources and conversely
each resource is monitored by some agent.* Since there is no
single agent that has a global system view, the allocation of the
shared resources must be done by collaboration of the agents
that require these resources (the monitoring agent is usually
one of those that require the shared resources).

We have identified two levels of interaction of the agents:
the strategic level where aggregate information is communi-
cated and the tactical level where information about specific
entities is communicated. The information communicated at
the strategic level is the demand profiles out of which the
agents calculate criticality measures for their decision making.
At the tactical level, particular scheduling decisions are made
and, if needed, negotiation takes place.

Because they may contend for the same resources, it is
important that the scheduling agents build their schedules in
a cooperative manner. The two texture measures identified
in the previous section provide a framework for cooperation
where the agents exchange demand profiles, and reservations.
Demand profiles are aggregated periodically to compute tex-
tures that allow agents to form expectations about the resource
demands of other agents. Because of communication overhead,
the demand profile information is restricted. Subsets of the
agents communicate only demand profiles for the resources
that they share, although reservations on the nonshared re-
sources may impact scheduling decisions on the shared ones.
Since several agents are scheduling asynchronously, and the
communicated demand profiles are only those of the subset of
shared resources, there is higher uncertainty in the system. This
uncertainty also varies in an inversely proportional manner
with the frequency at which the demand profiles are commu-
nicated. Moreover, the cost of backtracking is greater, since if
an agent backtracks, the change in scheduling reservations may
ripple through to the other agents and cause them to change
their reservations.

In particular, the multiagent communication protocol is as
follows.

1) Each agent determines required resources by checking
the process plans for the orders it has to schedule. It
sends a message to each monitoring agent (as specified
in a table of monitoring agent) informing it that it will
be using shared resources.

2) Each agent calculates its demand profile for the re-
sources (local and shared) that it needs.

3) Each agent determines whether its new demand profiles
differ significantly from the ones it sent previously for
shared resources. If its demand has changed, an agent
will send it to the monitoring agent.

4 Using multiple monitoring agents distributes the monitoring responsibility,
thus avoiding the inefficiency (in terms of congestion and potential cata-
strophic failures) that a single bureaucratic monitoring agent would engender.

5This model mirrors actual factory floor situations where the factory is
divided into work areas that might share resources, such as machines, fixtures
and operators in order to process orders.

1457

4) The monitoring agent combines all agent demands when
they are received and communicates the aggregate de-
mand to all agents that share the resource®.

5) Each agent uses the most recent aggregate demand
it has received to find its most critical resource/time-
interval pair and its most critical activity (the one
with the greatest demand on this resource for this time
interval). Since agents in general need to use a resource
for different time intervals, the most critical activity
and time interval for a resource will in general be
different for different agents. The agent communicates
this reservation request to the resource’s monitoring
agent and awaits a response.

6) The monitoring agent, upon receiving these reserva-
tion requests, checks the resource calendar for resource
availability. There are two cases:

a) If the resource is available for the requested
time interval, the monitoring agent 1) communi-
cates “Reservation OK” to the requesting agent,
2) marks the reservation on the resource calen-
dar, and 3) communicates the reservation to all
concerned agents (i.e., the agents that had sent
positive demands on the resource).

b) If the resource had already been reserved for the
requested interval, the request is denied. The agent
whose request was denied will then attempt to
substitute another reservation, if any others are
feasible, or otherwise perform backjumping.

7) Upon receipt of a message indicating its request was
granted, an agent will perform consistency checking
to determine whether any constraint violations have
occurred. If none are detected, the agent proceeds to
step 2. Otherwise, backjumping occurs with undoing of
reservations until a search state is reached that does
not cause constraint violations. Any reservations that
were undone during this phase are communicated to
the monitor for distribution to other agents. After a
consistent state is reached, the agent proceeds to step
2.

The system terminates when all activities of all agents
have been scheduled. Backtracking, with this version of the
protocol, is based on the following design decisions: 1) Once
an agent has been granted a reservation, this reservation is
not automatically undone when some other agent who had
to backtrack now needs the reservation. This can lead to
situations where one agent solves its local scheduling problem
but the other agent cannot due to unresolvable constraint
violations. 2) If an agent backtracks, it frees up resources but
the reservation of other agents on these resources remain as
they were. This policy may result in nonoptimal reservation
for other agents since it denies the other agents greater
opportunity to take advantage of the canceled reservations of

6With the exception of the first time demands are exchanged, agents do not
wait for aggregate demands to be computed and returned prior to continuing
their scheduling operations (although they can postpone further scheduling if
desired).

'

1458

the backtracking agent, but it results in less computationally
intensive performance.

VI. EXPERIMENTS WITH THE MULTIAGENT
SCHEDULING SYSTEM

The goals of our experiments were to determine the fea-
sibility of the texture approach to multiagent scheduling, as
well as to test particular mechanisms and parameters that
influence system performance. In particular, our experiments
considered:

* the effects of agents’ incomplete knowledge of each
other’s plans (i.e., the robustness of texture measures
when aggregated across multiple agents and with the
resulting loss of detailed information),

» the effects of rapidly changing expectations on perfor-
mance (i.¢., the robustness of these measures with respect
to delays in the communication of densities),

* the consequences of asynchronous scheduling (e.g., asyn-
chronous use of variable-ordering strategies) without ex-
ternal coordination.

One of the goals of the experiments was to compare
performance of multiagent and centralized schedulers. The
experiments summarized here were created from problems
found to be difficult- in previous research on centralized
scheduling [25] and they reflect system performance with
respect to search efficiency rather than schedule optimality.
The problems were also selected and distributed across the
agents in a way that maximized resource coupling within
orders and across agents.

All the experiments were repeated with 1, 2, 3, and 4 agents.
All experimental problems were selected so that orders could
be distributed approximately evenly between the agents, all
resources were shared by the agents (high interagent resource
coupling), every order used all resources, and problems ranged
from 40-100 activities. Over 150 experiments were run in
order to vary several properties of each problem. In each
case, the dependent variable was the efficiency with which the
scheduling system found a solution. This was expressed by the
total number of states needed to reach a solution. For example,
for a problem with 40 activities, the minimum number of
states needed to assign a reservation to each activity is 40.
Every reservation that needed to be redone added an additional
state to the total. This allowed comparing, for example, a
40-activity 1-agent problem to a pair of 20-activity problems
solved simultaneously by 2 agents.

Problem versions differed in several ways. First, to establish
a baseline, we created a 1-agent system, which was similar to
the multiagent system in every way, except that the aggregate
densities were constructed from a single agent. This was still
different from the original centralized system in that decisions
were based on an abstract aggregate (e.g., the aggregate did not
include detailed information about the number of activities that
contributed to the densities). Furthermore, it was possible to
vary the frequency with which the aggregate was computed,
thereby isolating the effect of uncertain expectations caused
by infrequent and delayed communication of densities in the
multiagent system.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 21, NO. 6, NOVEMBER/DECEMBER 1991

80
1-agent, SR
#of 70 — variable
States ord'ering
to Solve 60 — 2-agents
Problem 50 | 3-agents
1-agent
40 | 4-agents
| I I |
0 1 3 5
Communication Delay
Fig. 8. Experimental results of 40-activity experiments.
150 —
Total 140 — 2-agents
Number 130
of
Search 120 — _
States 3-agents
110 — 4-agents
100 .__/ t-agent

I I 1 I
! 3 S

o

Communication Delay

Fig. 9. Expenimental results of 100-activity experiments.

The timing of agent communication of their changed densi-
ties was determined by the following heuristic: in the MINI-
MUM delay condition, a single reservation on any resource by
any agent initiated the exchange of densities for all resources;
in the INCREASED delay conditions, densities were ex-
changed for each resource independently, whenever N reser-
vations were made on it, where N = 1,3, and 5. This provided
a way to observe the effects of wide ranges in communication
frequency (and hence the effect of information obsolescence)
in the system.

Another version of the 1-agent system was created that
used a semirandom (see Fig. 8) version of the variable-
ordering heuristic. The goal was to isolate and assess the
effects of less accurate variable ordering that might occur in a
multiagent system. Recall that variable ordering is performed
asynchronously in parallel in a multiagent system (each agent
selects the best activity to schedule from its subset of all
activities that require a critical resource). Agents do not
coordinate the selection of activities to schedule to ensure
that the globally most critical ones are scheduled first. As
a result, variable ordering is probably less effective than
in a l-agent system. The semirandom heuristic still selects
activities to schedule from those that require the most crit-
ical resource/time-interval (which narrows the selection to
a maximum of 20% of the activities in these problems).
However, it then randomly selects from this subset, instead
of selecting the activity with the greatest demand for the
critical resource. Finally, two scheduler versions were created
to compare the use of backtracking and backjumping search
techniques.

SYCARA et al.: DISTRIBUTED CONSTRAINED HEURISTIC SEARCH

The experimental results are presented in Figs. 8 and
9 for representative groups of 40-activity and 100-activity
experiments respectively.

The first important observation is that the use of texture
measures was sufficient to allow near perfect performance
when the texture information was updated frequently (MINI-
MUM Delay conditions). Thus, despite the incompleteness of
information available in the various versions (different number
of agents) of the multiagent system, texture measures provide
satisfactory summarizations. Second, as expected, performance
of the multiagent system does deteriorate as the commu-
nication of changing texture information is delayed. Since
current texture information is used to perform both variable
and value ordering, it is likely that both these processes
deteriorate.

The effect of delaying communication/computation of de-
mand densities is greater for all versions of the multiagent
than the 1-agent system. This interaction may reflect the
compensatory relation between variable and value ordering.
In the multiagent case, variable ordering may not be as
effective because variables are chosen asynchronously. When
texture measures are renewed frequently, there is valid in-
formation available to compensate for the poorer variable
ordering by selecting effective values for variables. How-
ever, when density communication is delayed, value ordering
is also weakened and the performance declines. In the 1-
agent system, variable-ordering is more effective, so the delay
does not hurt performance as much. This view is supported
by the results in the 1-agent semirandom variable-ordering
condition, where the effects of partially disabling variable
ordering accelerates with increasing delay, as it does in the
multiagent case. Note that multiagent performance is still
better than the semirandom condition in all cases, suggesting
that variable ordering strategy is robust with respect to the
conditions of the multiagent environment (incomplete, change-
able information and asynchronous behavior without external
coordination).

We should also note that the semirandom condition is
still highly selective relative to completely random variable
ordering (in that only activities that use the most critical
resource/time interval are considered). In fact, we found that
random variable ordering resulted in terrible performance,
even in the 1-agent case. Solutions were not found in over
500 states. As expected, the use of a backjumping strategy
substantially reduced the search in the multiagent versions
of the system. Performance using a chronological backtrack-
ing strategy was highly variable and degraded exponentially
with delayed communication (searches exceeded 300 states
when communication was delayed to after three reserva-
tions).

Another interesting observation from our experimentation
was that different distributions of orders to agents produced
different results in that one decompositions might result in
feasible solutions by all agents whereas another might result
in some of the agents finishing the scheduling of their assigned
orders whereas the rest did not finish. Although we have not
systematically performed experimentation with characteristics
of the various decompositions, we hypothesize that agents with

1459

“easier” assignments manage to obtain the good reservations
for their activities, causing solution infeasibilities for the rest
of the agents. Studying the effect of different decompositions
and their characteristics is one of the subjects of future
research.

VII. CONCLUSION

In this paper we presented the Distributed Constraint Heuris-
tic Search model and presented mechanisms to guide con-
current, asynchronous distributed search. In particular, we
have presented measures of characteristics of a search space,
called textures, that are used to focus the attention of agents
during search and allow them to make good decisions both
in terms of quality of system solution and performance.
These textures play four important roles in distributed search:
1) they focus the attention of an agent to globally critical
decision points in its local search space, 2) they provide
guidance in making a particular decision at a decision point,
3) they are good predictive measures of the impact of local
decisions on system goals, and 4) they are used to make
inferences about intentions of other agents. We have presented
two types of textures, their operationalization into variable
and value ordering heuristics and their use in distributed
problem solving. A communication protocol that enabies the
agents to coordinate their decisions has been presented. We
have developed a variant of dependency-directed backtracking,
asynchronous backjumping, that substantially reduces back-
tracking costs.

Our investigation is conducted in the domain of distributed
job-shop scheduling. A model of distributed job shop sched-
uling as an instance of DCHS has been developed and a
testbed has been implemented that allows for experimentation
with a variety of distributed protocols that use variable and
value ordering heuristics based on the probabilistic frame-
work described in Sections IV-A and IV-B. The experi-
ments are designed to give results concerning the role of the
heuristics in achieving search efficiency in distributed asyn-
chronous DCHS under conditions of incomplete and rapidly
changing information. The testbed is implemented in a de-
centralized manner in KnowledgeCraft running on top of
Common Lisp, and can be run on a set of MICROVAX’s
3200.

Future work will concentrate on a) continued experimenta-
tion to identify the class of distributed CSP’s that can be solved
efficiently by our algorithm, and b) developing strategies for
adaptive use of various value ordering heuristics depending
on where each agent is in its search when it has to make
a reservation. In addition, we plan to develop negotiation
protocols that will enable agents that contend for the same
resource/time-interval (i.e., reservation) to negotiate over who
should actually be granted the reservation. Criteria for making
such a decision will include the relative priorities of the orders
that the two contending agents have to schedule, how far
each agent is in its scheduling, and whether an agent has
access to a substitutable resource, or relies solely on using
the contended-for resource.

1460

REFERENCES

[1] K. R. Baker, Introduction to Sequencing and Scheduling. New York:
Wiley, 1974.

[2] I. R. Bitner and E. M. Reingold, “Backtrack programming techniques,”

- Commun. ACM, vol. 18, no. 11, pp. 651655, 1975.

{3] S. Cammarata, D. McArthur, and R. Steeb, “Strategies of cooperation
in distributed problem solving,” in Proc. IJCAI-83, Karlsruhe, W.
Germany, 1983, pp. 767-770.

[4] S. Conry, R. Meyer, and V. Leser, “Multistage negotiation in distributed
planning,” in Readings in Distributed Al, A. Bond and L. Gasser, Eds.
Los Altos, CA: Morgan Kaufmann, 1988.

[5] R.Dechter, “Enhancement schemes for constraint processing: backjump-
ing, learning, and cutset decomposition,” Artificial Intell., vol. 41, pp.
273-312, 1989.

{6] J. de Kleer, “Dependency-directed backtracking,” in Encyclopedia of

Artificial Intelligence S. Shapiro, Ed. New York: Wiley, 1987.

{71 E. Deerfly, V. Lesser, and D. Corkill, “Coherent cooperation among
communicating problem solvers,” Tech. Rep., Dept. Comput. Sci. In-
form. Sci., Univ. Mass.—Ambherst, Sept. 1985.

[8] E. H. Durfee, “A unified approach to dynamic coordination: Planning
actions and interactions in a distributed problem solving network,” Ph.D.
thesis, Comput. and Inform. Sci. Dept., Univ. Massachusetts, 1987.

[9] M. S. Fox, “An organizational view of distributed systems,” IEEE Trans.
Syst., Man, Cybern., vol. SMC-11, pp. 70-80, 1981.

, “Constraint-directed search: A case study of job shop schedul-

ing,” Ph.D. thesis, Comput. Sci. Dept., Carnegie-Mellon Univ., 1983.

M. S. Fox, N. Sadeh, and C. Baykan, “Constrained heuristic search,” in

Proc. Eleventh Int. Joint Conf. Artificial Intell., pp. 309-315, 1989.

M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide

to the Theory of NP-Completeness. Boston: Freeman, 1979.

[13] I. Gaschnig, “Performance measurement and analysis of certain search

algorithms,” Tech. Rep. CMU-CS-79-124, Comput. Sci. Dept., Carnegie

Mellon Univ., Pittsburgh, PA, 1979.

S. W. Golomb and L. D. Baumert, “Backtrack programming,” J. ACM,

vol. 12, no. 4, pp. 516-524, 1965.

S. C. Graves, “A review of production scheduling,” Operations Res.,

vol. 29, no. 4, pp. 646-675, July-Aug., 1981.

T. Ishida, M. Yokoo, and L. Gasser, “An organizational approach to

adaptive production systems,” in Proc. AAAI-90, Boston, MA, 1990.

N. Keng and D. Y. Y. Yun, “A planning/scheduling methodology for

the constrained resource problem,” in Proc. Eleventh Int. Joint Conf.

Artificial Intell. 1989, pp. 998-1003.

K. Kuwabara and V. Lesser, “Extended protocol for multi-stage nego-

tiation,” in Proc. 9th Int. Workshop on DAI. 1989.

C. LePape and S. F. Smith, “Management of temporal constraints for

factory scheduling,” in C. Rolland, M. Leonard, and F. Bodart, Ed.,

Proc. IFIP TC 8/WG 8.1 Working Conf. Temporal Aspects in Inform.

Syst. (TAIS 87). New York: Elsevier Science, held in Sophia Antipolis,

France, May 1987.

[20] V. Lesser, “An overview of DAL Viewing distributed ai as distributed
search,” J. Japanese Soc. Artificial Intell. vol. 5, no. 4, 1990.

[21] A. K. Mackworth and E. C. Freuder, “The complexity of some poly-
nomial network consistency algorithms for constraint satisfaction prob-
lems,” Artificial Intell. vol. 25, no. 1, pp. 65-74, 1985.

[22] B. Nadel, “Tree search and arc consistency in constraint satisfaction
algorithms,” Search in Articial Intelligence, in L. Kanal and V. Kumar,
Eds. New York: Springer-Verlag, 1988.

[23] H. V. Parunak, P. W. Lozo, R. Judd, and B. W. Irish, “A distributed

heuristic strategy for material transportation,” in Proc. 1986 Conf.

Intelligent Syst. Machines, Rochester, MI, 1986.

A. H. G. Rinnooy Kan, “Machine scheduling problems: Classification,

complexity, and computations,” Ph.D. thesis, Univ. Amsterdam, 1976.

N. Sadeh and M. S. Fox, “Variable and value ordering heuristics for

activity-based job-shop scheduling,” in Proc. Fourth Int. Conf. Expert

Syst. in Production and Operations Management, Hilton Head Island,

SC, pp. 134-144, 1990.

N. Sadeh, “Look-ahead techniques for micro-opportunistic job shop

scheduling,” PhD thesis, School Comput. Sci., 1991.

S. F. Smith, M. S. Fox, and P. S. Ow, “Constructing and maintain-

ing detailed production plans: Investigations into the development of

knowledge-based factory scheduling systems,” Al Mag., vol 7, no. 4,

Fall 1986.

S. F. Smith and J. E. Hynynen, “Integrated decentralization of produc-

tion management: An approach for factory scheduling,” in Proc. ASME

Annu. Winter Conf.: Symp. Integrated and Intelligent Manufacturing.

Boston, MA, Dec. 1987.

[29] M. Yokoo, T. Ishida, and K. Kuwabara, “Distributed constraint satis-

[14]
[15]

[16

[17

(18

[19]

(24]

(2]

[26]

[27

(28]

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 21, NO. 6, NOVEMBER/DECEMBER 1991

faction for DAI problems,” in Proc. 10th Int. Workshop DAI, Banderra,
TX, 1990.

Katia Sycara received the B.S. in applied mathe-
matics from Brown University, Providence. RI. the
M.S. degree in applied mathematics and electrical
engineering from the University of Wisconsin, what
city, and the Ph.D. degree in computer science from
the Georgia Institute of Technology.

She is a Research Scientist in the School of
Computer Science at Carnegie-Mellon University.
She is also the Director of the Laboratory for
Enterprise Integration. She has served as Head of
the Computing Section at the Center of Planning
and Economic Research, a government research institute in Athens, Greece.
While there, she participated in the development of econometric models of the
Greek Economy and acted as liaison for Regional Planning with the European
Economic Community. She has published many papers in the areas of artificial
intelligence, operations research, and production management. She is currently
working on a variety of projects including concurrent engineering design.
production scheduling; and enterprise modeling and integration. Her research
interests include knowledge-based systems, distributed problem solving by
machine and human agents, negotiation models for mutliagent planning
and scheduling, case-based reasoning, and constraint-directed reasoning. She
is particularly interested in integrating operations research and artificial
intelligence methods in addressing manufacturing and management problems.

Dr. Sycara is member of the AAAL, ACM, the Cognitive Science Society.
the IEEE Computer Society, and the Institute for Management Science.

Steven F. Roth received the B.A. degree in psychol-
ogy from the State University of New York at Stony
Brook and the Ph. D. degree in cognitive psychology
from the University of Pittsburgh.

He is the Director of the Information Presentation
and Interfaces Lab at Carnegie-Mellon’s Robotics
Institute. His interests have included applying arti-
ficial intelligence technologies to project manage-
ment, transportation scheduling, distributed factory
scheduling, and computer-assisted instruction. He
is currently working on the system for automatic
graphics and explanation, which is an investigation of intelligent interfaces
that automatically design graphical displays on of information.

Dr. Roth is a member of AAAI, ACM, SIGCHI, and the American
Psychological Association.

Norman Sadeh received a degree in electrical en-
gineering and physics from the Ecole Polytechnique
at the Université Libre de Bruxelles, Brussels, Bel-
gium, the M.S. degree in computer science from
the University of Southern California, Los Angeles,
and the Ph.D. degree in computer science from
Carnegie-Mellon University, Pittsburgh, PA.

He is a Research Scientist at Carnegie Mellon's
Robotics Institute. He is a member of the production
Control Laboratory and the Laboratory for Enter-
prise Integration at the Center for Integrated Manu-
facturing Decision Systems, where he developed the MICRO-BOSS/CORTES
factory scheduler. His research interests include the application of artificial
intelligence and operations research techniques to both engineering and man-
agement problems. He has done research in both centralized and decentralized
planning and scheduling, distributed problem solving, constraint satisfaction
and constrained optimization.

SYCARA ef al.: DISTRIBUTED CONSTRAINED HEURISTIC SEARCH

Mark S. Fox (S’ 76-M’79-S’79-S’80-M’80-M’81)
received the B.Sc. degree in computer science from
the University of Toronto in 1975 and the Ph.D. in
computer science from Carnegie-Mellon University
in 1983.

In 1979, he joined the Robotics Institute of
Carnegie-Mellon University as a Research Scientist.
In 1980, he was appointed Director of the
Intelligent Systems Laboratory. He co-founded
Carnegie Group, Inc., in 1984, a software company
that specialized in knowledge-based systems for
solving engineering and manufacturing problems. He became Associate
Professor of Computer Science and Robotics in 1987 at Carnegie-Mellon.
In 1988 he was appointed Director of the new Center for Integrated
Manufacturing Decision Systems. He worked on the application of artificial
intelligence to factory planning and scheduling problems, project management,
and material design. He was the designer of PDS/GENAID, a steam turbine
generator diagnostic system that was a recipient of the IR100, and was
the creator of SRL from which Knowledge Craft, a commercial knowledge
cngincering tool, was derived. His research interests include knowledge
representation, constraint directed reasoning, an applications of artificial
intelligence to engineering and manufacturing problems. He has published
more than 50 papers.

Dr. Fox is a member of AAAI, ACM, SME, CSCSI, and TIMS.

1461

