Semantic Distance

Ted Goranson
ICEIMT04
Some ICEIMT History

1992
Monolithic Frameworks
Object Orientation
Business Case

1997
Ontologies
Virtual Enterprises
Uncertainties

2002
Semantic Distance
Humanized Functions
TransStandards
Semantic “Federation”

Integration is always a game of:
- Homogenize where you can
- Develop methods for handling the rest
- On beyond zero, by definition
- No standards, by definition
- Formal methods usually lacking here

All we are doing is handling the problem of imperfect semantic conveyance
Semantic Distance

We mean in the limited case, a measure of the imperfection of *semantic conveyance*...
but could more generally be seen as a measure of *similarity* between two meanings.
Based on the openness of application...
Many Applications

Enterprise Integration
- Context-specific tool certification
- Learning vector for self-annealing enterprises

Concept indexing (library, semantic web)
Biochemical “intent”
We Propose

A multidisciplinary solution, rooted in the EI semantic conveyance problem for Virtual Enterprises

- but tools applicable to the other domains
- necessary for “intuitive development” and broad acceptance
The Virtual Enterprise

Change Processes in Operation

Join with Changed Processes

Distributed State Control

Temporary Possibilities

Not Premodularized

Small and Medium-sized Partners

Distributed Partners

Monolithic Enterprises

Mundane case

Monolithic Enterprises

Distributed Partners

Small and Medium-sized Partners

Mundane case
An International Workshop

Thirty experts, heavy European engagement
Dialog with another twenty since
Plus a Joint Experimentation Command task
Wiki at: <http://interop.cim3.net/cgi-bin/wiki.pl?IntroDuction>
Some Observations

Some very tentative ideas, sensitive to the larger application spread.
Measure Semantic Intent

- Motive
- Communication
- Process
- Outcome
- Sending Actor
- Receiving Actor
- Effective Actor

Diagram showing the flow from Motive to Communication, then to Process, and finally to Outcome, with actors involved in each stage.
Condition 1

1. Perfect Conveyance – with context scope

Assumes standards are:
- done
- comprehensive
- coordinated
- perfect
- apt
- cheap
- competitive-friendly
- employed
Condition 2

2. Good Enough For Use – with context scope

“Send me 1000 gizmos”
Condition 3

3. Close Enough To Fix Once
 – with cost and context

“Send me 1000 gizmitas”
“What do is a gizmita?”
Condition 4

4. Close Enough To Change – with cost and context

“Send me 1000 gizmos by which I mean...”
Condition 5

5. Too Far Off To Fix
But Effect Manageable/Recoverable
– with cost and context

“I’m making 1000 cars, send me 1,000,000 steering wheels”
Condition 6

6. Too Far Off To Fix But Effect Could Be Tolerable – with cost and context

“I’m making 1000 cars...”
“I’ll send that many steering wheels”
Condition 7

7. Too Far Off to Fix And Effect Is Intolerable – with cost of catastrophe

“Send me 1,000,000 steering wheels”
A Semantic Interoperability Language
- A metalanguage with metalogic which formally covers the territory
- Used for queries and dialog among actors and concerning the nature of conveyance
- Based on Situation Theory?
Need #1

A Semantic Interoperability Language

- A metalanguage with metalogic which formally covers the territory
- Used for queries and dialog among actors and concerning the nature of conveyance
- Based on Situation Theory?

Essential for communications about communications (including encryption)
Need #2

A Theory for General Context Characterization

- Very tricky because large portions of the context need to be imputed
- Probably the thing that changes most with application domain
- Must involve various probabilists
Need #2

A Theory for General Context Characterization

- Very tricky because large portions of the context need to be imputed
- Probably the thing that changes most with application domain
- Must involve various probabilists

Known Message
Other Message Factors
Modeled Process (context)
Unmodeled Process Components
Unknown Linkages and Effects In Other Processes

Essential for “modeling” (imputing) the unmodeled (including encryption)
Need #3

A Calculus for Semantic Metrics
- Not necessary for many users
- Needed for zooming and calculation in abstraction space
- Probably Group Theoretic
A Calculus for Semantic Metrics

- Not necessary for many users
- Needed for zooming and calculation in abstraction space
- Probably Group Theoretic

Used only for native calculus,
... but essential for reasoning among conditions and building a reference base
Need #4

Accessible Metaphors for User Interface
- A means for local generation of scalars
- A graphical notion of fittedness
- Ontology difference trees/graphs
Need #4

Accessible Metaphors for User Interface
- A means for local generation of scalars
- A graphical notion of fitness
- Ontology difference trees/graphs

Intuitive Abstractions
- Scalars
- Trees, “Closeness” Graphs
- Film-derived introspection

Metrics (Metamodels)

Models

Outliners?

UEML?
Last Slide

Agenda still forming
Contact me: tedg@sirius-beta.com